2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      BacMam Expressing Highly Glycosylated Porcine Interferon Alpha Induces Robust Antiviral and Adjuvant Effects against Foot-and-Mouth Disease Virus in Pigs

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Early inhibition of foot-and-mouth disease (FMD) virus (FMDV) replication in pigs is highly desirable as FMDV transmission and shedding rates are higher in pigs than in cattle. However, commercial FMD vaccines require at least 4 to 7 days postvaccination (dpv) for protection, and animals are vulnerable to heterologous viruses before acquiring high antibody levels after the second vaccination.

          ABSTRACT

          Foot-and-mouth disease (FMD) is an acute contagious disease that affects cloven-hoofed animals and has severe global economic consequences. FMD is most commonly controlled by vaccination. Currently available commercial FMD vaccines contain chemically inactivated whole viruses, which are thought to be slow acting as they are effective only 4 to 7 days following vaccination. Hence, the development of a novel rapid vaccine or alternative measures, such as antiviral agents or the combination of vaccines and antiviral agents for prompt FMD virus (FMDV) outbreak containment, is desirable. Here, we constructed a recombinant baculovirus (BacMam) expressing consensus porcine interferon alpha (IFN-α) that has three additional N-glycosylation sites driven by a cytomegalovirus immediate early (CMV-IE) promoter (Bac-Con3N IFN-α) for protein expression in mammalian cells. Bac-Con3N IFN-α expressing highly glycosylated porcine IFN-α protein increased the duration of antiviral effects. We evaluated the antiviral effects of Bac-Con3N IFN-α in swine cells and mice and observed sustained antiviral effects in pig serum; additionally, Bac-Con3N IFN-α exhibited sustained antiviral effects in vivoas well as adjuvant effects in combination with an inactivated FMD vaccine. Pigs injected with a combination of Bac-Con3N IFN-α and the inactivated FMD vaccine were protected against FMDV at 1, 3, and 7 days postvaccination. Furthermore, we observed that in combination with the inactivated FMD vaccine, Bac-Con3N IFN-α increased neutralizing antibody levels in mice and pigs. Therefore, we suggest that Bac-Con3N IFN-α is a strong potential antiviral and adjuvant candidate for use in combination with inactivated FMD vaccines to protect pigs against FMDV.

          IMPORTANCEEarly inhibition of foot-and-mouth disease (FMD) virus (FMDV) replication in pigs is highly desirable as FMDV transmission and shedding rates are higher in pigs than in cattle. However, commercial FMD vaccines require at least 4 to 7 days postvaccination (dpv) for protection, and animals are vulnerable to heterologous viruses before acquiring high antibody levels after the second vaccination. Therefore, the development of antiviral agents for use in combination with FMD vaccines is essential. We developed a novel antiviral and immunostimulant, Bac-Con3N IFN-α, which is a modified porcine IFN-α-expressing recombinant baculovirus, to improve IFN stability and allow its direct delivery to animals. We present a promising candidate for use in combination with inactivated FMD vaccines as pigs applied to the strategy had early protection against FMDV at 1 to 7 dpv, and their neutralizing antibody levels were higher than those in pigs administered the vaccine only.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Type i interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo.

          Type I interferons (IFN-I) are rapidly induced following infection and play a key role in nonspecific inhibition of virus replication. Here we have investigated the effects of IFN-I on the generation of antigen-specific antibody responses. The data show that IFN-I potently enhance the primary antibody response to a soluble protein, stimulating the production of all subclasses of IgG, and induce long-lived antibody production and immunological memory. In addition, endogenous production of IFN-I was shown to be essential for the adjuvant activity of CFA. Finally, IFN-I enhanced the antibody response and induced isotype switching when dendritic cells were the only cell type responding to IFN-I. The data reveal the potent adjuvant activity of IFN-I and their important role in linking innate and adaptive immunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Determination of 50% endpoint titer using a simple formula.

            Two commonly used methods for calculating 50% endpoint using serial dilutions are Spearman-Karber method and Reed and Muench method. To understand/apply the above formulas, moderate statistical/mathematical skills are necessary. In this paper, a simple formula/method for calculating 50% endpoints has been proposed. The formula yields essentially similar results as those of the Spearman-Karber method. The formula has been rigorously evaluated with several samples.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Baculovirus as versatile vectors for protein expression in insect and mammalian cells

              Today, many thousands of recombinant proteins, ranging from cytosolic enzymes to membrane-bound proteins, have been successfully produced in baculovirus-infected insect cells. Yet, in addition to its value in producing recombinant proteins in insect cells and larvae, this viral vector system continues to evolve in new and unexpected ways. This is exemplified by the development of engineered insect cell lines to mimic mammalian cell glycosylation of expressed proteins, baculovirus display strategies and the application of the virus as a mammalian-cell gene delivery vector. Novel vector design and cell engineering approaches will serve to further enhance the value of baculovirus technology.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Virology
                J Virol
                American Society for Microbiology
                0022-538X
                1098-5514
                June 22 2022
                June 22 2022
                : 96
                : 12
                Affiliations
                [1 ]Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon City, Gyeongsangbuk-do, Republic of Korea
                Article
                10.1128/jvi.00528-22
                9215255
                35604219
                bdf1761e-e64c-4b1b-8d0a-c425c7da05a2
                © 2022

                https://doi.org/10.1128/ASMCopyrightv2

                https://journals.asm.org/non-commercial-tdm-license

                History

                Comments

                Comment on this article