2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tracking the ice mantle history in the Solar-type Protostars of NGC 1333 IRAS 4

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To understand the origin of the diversity observed in exoplanetary systems, it is crucial to characterize the early stages of their formation, represented by Solar-type protostars. Likely, the gaseous chemical content of these objects directly depends on the composition of the dust grain mantles formed before the collapse. Directly retrieving the ice mantle composition is challenging, but it can be done indirectly by observing the major components, such as NH3 and CH3OH at cm wavelengths, once they are released into the gas-phase during the warm protostellar stage. We observed several CH3OH and NH3 lines toward three Class 0 protostars in NGC1333 (IRAS 4A1, IRAS 4A2, and IRAS 4B), at high angular resolution (1"; ~300 au) with the VLA interferometer at 24-26 GHz. Using a non-LTE LVG analysis, we derived a similar NH3/CH3OH abundance ratio in the three protostars (<0.5, 0.015-0.5, and 0.003-0.3 for IRAS 4A1, 4A2, and 4B, respectively). Hence, we infer they were born from pre-collapse material with similar physical conditions. Comparing the observed abundance ratios with astrochemical model predictions, we constrained the dust temperature at the time of the mantle formation to be ~17 K, which coincides with the average temperature of the southern NGC 1333 diffuse cloud. We suggest that a brutal event started the collapse that eventually formed IRAS 4A1, 4A2 and 4B, which,therefore, did not experience the usual pre-stellar core phase. This event could be the clash of a bubble with NGC 1333 south, that has previously been evoked in the literature.

          Related collections

          Author and article information

          Journal
          30 July 2022
          Article
          2208.00247
          be2019b7-e396-4a8c-aa8f-94c4debef32f

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          accepted in ApJ Letters
          astro-ph.SR astro-ph.EP astro-ph.GA

          Planetary astrophysics,Galaxy astrophysics,Solar & Stellar astrophysics
          Planetary astrophysics, Galaxy astrophysics, Solar & Stellar astrophysics

          Comments

          Comment on this article