118
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spins in few-electron quantum dots

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review describes the physics of spins in quantum dots containing one or two electrons, from an experimentalist's viewpoint. Various methods for extracting spin properties from experiment are presented, restricted exclusively to electrical measurements. Furthermore, experimental techniques are discussed that allow for: (1) the rotation of an electron spin into a superposition of up and down, (2) the measurement of the quantum state of an individual spin and (3) the control of the interaction between two neighbouring spins by the Heisenberg exchange interaction. Finally, the physics of the relevant relaxation and dephasing mechanisms is reviewed and experimental results are compared with theories for spin-orbit and hyperfine interactions. All these subjects are directly relevant for the fields of quantum information processing and spintronics with single spins (i.e. single-spintronics).

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Spintronics: Fundamentals and applications

          Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Quantized conductance of point contacts in a two-dimensional electron gas

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single spin detection by magnetic resonance force microscopy.

              Magnetic resonance imaging (MRI) is well known as a powerful technique for visualizing subsurface structures with three-dimensional spatial resolution. Pushing the resolution below 1 micro m remains a major challenge, however, owing to the sensitivity limitations of conventional inductive detection techniques. Currently, the smallest volume elements in an image must contain at least 10(12) nuclear spins for MRI-based microscopy, or 10(7) electron spins for electron spin resonance microscopy. Magnetic resonance force microscopy (MRFM) was proposed as a means to improve detection sensitivity to the single-spin level, and thus enable three-dimensional imaging of macromolecules (for example, proteins) with atomic resolution. MRFM has also been proposed as a qubit readout device for spin-based quantum computers. Here we report the detection of an individual electron spin by MRFM. A spatial resolution of 25 nm in one dimension was obtained for an unpaired spin in silicon dioxide. The measured signal is consistent with a model in which the spin is aligned parallel or anti-parallel to the effective field, with a rotating-frame relaxation time of 760 ms. The long relaxation time suggests that the state of an individual spin can be monitored for extended periods of time, even while subjected to a complex set of manipulations that are part of the MRFM measurement protocol.
                Bookmark

                Author and article information

                Journal
                16 October 2006
                2007-06-05
                Article
                10.1103/RevModPhys.79.1217
                cond-mat/0610433
                c02d5cdd-592c-46cd-9a47-64e70f580e84
                History
                Custom metadata
                Rev. Mod. Phys. 79, 1217 (2007)
                final version (52 pages, 49 figures), Rev. Mod. Phys
                cond-mat.mes-hall quant-ph

                Comments

                Comment on this article