27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Understanding the Agility of Running Birds: Sensorimotor and Mechanical Factors in Avian Bipedal Locomotion

      research-article
      Integrative and Comparative Biology
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Birds are a diverse and agile lineage of vertebrates that all use bipedal locomotion for at least part of their life. Thus birds provide a valuable opportunity to investigate how biomechanics and sensorimotor control are integrated for agile bipedal locomotion. This review summarizes recent work using terrain perturbations to reveal neuromechanical control strategies used by ground birds to achieve robust, stable, and agile running. Early experiments in running guinea fowl aimed to reveal the immediate intrinsic mechanical response to an unexpected drop (“pothole”) in terrain. When navigating the pothole, guinea fowl experience large changes in leg posture in the perturbed step, which correlates strongly with leg loading and perturbation recovery. Analysis of simple theoretical models of running has further confirmed the crucial role of swing-leg trajectory control for regulating foot contact timing and leg loading in uneven terrain. Coupling between body and leg dynamics results in an inherent trade-off in swing leg retraction rate for fall avoidance versus injury avoidance. Fast leg retraction minimizes injury risk, but slow leg retraction minimizes fall risk. Subsequent experiments have investigated how birds optimize their control strategies depending on the type of perturbation (pothole, step, obstacle), visibility of terrain, and with ample practice negotiating terrain features. Birds use several control strategies consistently across terrain contexts: (1) independent control of leg angular cycling and leg length actuation, which facilitates dynamic stability through simple control mechanisms, (2) feedforward regulation of leg cycling rate, which tunes foot-contact timing to maintain consistent leg loading in uneven terrain (minimizing fall and injury risks), (3) load-dependent muscle actuation, which rapidly adjusts stance push-off and stabilizes body mechanical energy, and (4) multi-step recovery strategies that allow body dynamics to transiently vary while tightly regulating leg loading to minimize risks of fall and injury. In future work, it will be interesting to investigate the learning and adaptation processes that allow animals to adjust neuromechanical control mechanisms over short and long timescales.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Decoding the organization of spinal circuits that control locomotion.

          Ole Kiehn (2016)
          Unravelling the functional operation of neuronal networks and linking cellular activity to specific behavioural outcomes are among the biggest challenges in neuroscience. In this broad field of research, substantial progress has been made in studies of the spinal networks that control locomotion. Through united efforts using electrophysiological and molecular genetic network approaches and behavioural studies in phylogenetically diverse experimental models, the organization of locomotor networks has begun to be decoded. The emergent themes from this research are that the locomotor networks have a modular organization with distinct transmitter and molecular codes and that their organization is reconfigured with changes to the speed of locomotion or changes in gait.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamic sensorimotor interactions in locomotion.

            Locomotion results from intricate dynamic interactions between a central program and feedback mechanisms. The central program relies fundamentally on a genetically determined spinal circuitry (central pattern generator) capable of generating the basic locomotor pattern and on various descending pathways that can trigger, stop, and steer locomotion. The feedback originates from muscles and skin afferents as well as from special senses (vision, audition, vestibular) and dynamically adapts the locomotor pattern to the requirements of the environment. The dynamic interactions are ensured by modulating transmission in locomotor pathways in a state- and phase-dependent manner. For instance, proprioceptive inputs from extensors can, during stance, adjust the timing and amplitude of muscle activities of the limbs to the speed of locomotion but be silenced during the opposite phase of the cycle. Similarly, skin afferents participate predominantly in the correction of limb and foot placement during stance on uneven terrain, but skin stimuli can evoke different types of responses depending on when they occur within the step cycle. Similarly, stimulation of descending pathways may affect the locomotor pattern in only certain phases of the step cycle. Section ii reviews dynamic sensorimotor interactions mainly through spinal pathways. Section iii describes how similar sensory inputs from the spinal or supraspinal levels can modify locomotion through descending pathways. The sensorimotor interactions occur obviously at several levels of the nervous system. Section iv summarizes presynaptic, interneuronal, and motoneuronal mechanisms that are common at these various levels. Together these mechanisms contribute to the continuous dynamic adjustment of sensorimotor interactions, ensuring that the central program and feedback mechanisms are congruous during locomotion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organization of mammalian locomotor rhythm and pattern generation.

              Central pattern generators (CPGs) located in the spinal cord produce the coordinated activation of flexor and extensor motoneurons during locomotion. Previously proposed architectures for the spinal locomotor CPG have included the classical half-center oscillator and the unit burst generator (UBG) comprised of multiple coupled oscillators. We have recently proposed another organization in which a two-level CPG has a common rhythm generator (RG) that controls the operation of the pattern formation (PF) circuitry responsible for motoneuron activation. These architectures are discussed in relation to recent data obtained during fictive locomotion in the decerebrate cat. The data show that the CPG can maintain the period and phase of locomotor oscillations both during spontaneous deletions of motoneuron activity and during sensory stimulation affecting motoneuron activity throughout the limb. The proposed two-level CPG organization has been investigated with a computational model which incorporates interactions between the CPG, spinal circuits and afferent inputs. The model includes interacting populations of spinal interneurons and motoneurons modeled in the Hodgkin-Huxley style. Our simulations demonstrate that a relatively simple CPG with separate RG and PF networks can realistically reproduce many experimental phenomena including spontaneous deletions of motoneuron activity and a variety of effects of afferent stimulation. The model suggests plausible explanations for a number of features of real CPG operation that would be difficult to explain in the framework of the classical single-level CPG organization. Some modeling predictions and directions for further studies of locomotor CPG organization are discussed.
                Bookmark

                Author and article information

                Journal
                Integr Comp Biol
                Integr. Comp. Biol
                icb
                Integrative and Comparative Biology
                Oxford University Press
                1540-7063
                1557-7023
                November 2018
                12 June 2018
                12 June 2018
                : 58
                : 5
                : 884-893
                Affiliations
                Structure and Motion Lab, Royal Veterinary College, Hawkshead Lane, Hertfordshire, AL9 7TA, UK
                Author notes

                From the symposium “Sensory Feedback and Animal Locomotion: Perspectives from Biology and Biorobotics” presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2018 at San Francisco, California.

                Article
                icy058
                10.1093/icb/icy058
                6204994
                29897448
                c128c434-32e7-420a-b1ce-cf2bd6d9e68a
                © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 10
                Funding
                Funded by: Biotechnology and Biological Sciences Research Council 10.13039/501100000268
                Award ID: BB/H005838/1
                Funded by: Human Frontier Science Program 10.13039/100004412
                Award ID: RGY0062/2010
                Funded by: Company of Biologists 10.13039/501100000522
                Funded by: Society for Comparative and Integrative Biology
                Funded by: Air Force Office of Scientific Research 10.13039/100000181
                Award ID: FA9550-16-1-0165
                Funded by: National Science Foundation 10.13039/100000001
                Award ID: IOS-1747859
                Categories
                Sensory Feedback and Animal Locomotion: Perspectives from Biology and Biorobotics

                Comparative biology
                Comparative biology

                Comments

                Comment on this article