2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      N6-Methyladenosine Regulator-Mediated Immue Patterns and Tumor Microenvironment Infiltration Characterization in Glioblastoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Epigenetic modifications, according to emerging evidence, perform a critical role for cellular immune response and tumorigenesis. Nonetheless, the role of N6-methyladenosine modification in shaping of the glioblastoma tumor microenvironment is unknown.

          Methods

          N6-methyladenosine(m6A) methylation patterns in GBM patients were evaluated via multiple omics analysis of 15 m6A regulators and systematically correlated with tumor immune features. For quantification of N6-methyladenosine methylation patterns of individual patients, GM-score was developed and correlated with clinical and immunological characteristics.

          Results

          Glioblastoma has two different m6A methylation patterns that are strongly associated with TME characteristics, tumor subtype, immunotherapy response, and patient prognosis. High-GM-score is associated with an immune tolerance phenotype dominated by the IDH1 wild molecular subtype and the Mesenchymal tissue subtype, as well as a high infiltration of immune cells and stromal cells and a poor prognosis. Furthermore, despite higher immune checkpoint expression, individuals with a high-GM-score have a poorer response to anti-CTLA4 immunotherapy regimens due to T-cells dysfunctional. Low-GM-score individuals had an immunodeficient phenotype dominated by IDH mutant molecular subtypes and Proneural tissue subtypes, with less immune cell infiltration and a better prognosis. Furthermore, patients with low-GM-scores had higher microsatellite instability (MSI) and t-cell exclusion scores, as well as a better response to anti-CTLA4 immunotherapy regimens.

          Conclusion

          This study demonstrated that m6A modification patterns play an important role in the shaping of TME complexity and diversity. The GM-score could identify m6A modification patterns in individual patients, resulting in a more personalization and efficacious anti-tumor immunotherapy strategy.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response

          Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, a computational method to model two primary mechanisms of tumor immune evasion: the induction of T cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTL) and the prevention of T cell infiltration in tumors with low CTL level. We identified signatures of T cell dysfunction from large tumor cohorts by testing how the expression of each gene in tumors interacts with the CTL infiltration level to influence patient survival. We also modeled factors that exclude T cell infiltration into tumors using expression signatures from immunosuppressive cells. Using this framework and pre-treatment RNA-Seq or NanoString tumor expression profiles, TIDE predicted the outcome of melanoma patients treated with first-line anti-PD1 or anti-CTLA4 more accurately than other biomarkers such as PD-L1 level and mutation load. TIDE also revealed new candidate ICB resistance regulators, such as SERPINB9 , demonstrating utility for immunotherapy research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microenvironmental regulation of tumor progression and metastasis.

            Cancers develop in complex tissue environments, which they depend on for sustained growth, invasion and metastasis. Unlike tumor cells, stromal cell types within the tumor microenvironment (TME) are genetically stable and thus represent an attractive therapeutic target with reduced risk of resistance and tumor recurrence. However, specifically disrupting the pro-tumorigenic TME is a challenging undertaking, as the TME has diverse capacities to induce both beneficial and adverse consequences for tumorigenesis. Furthermore, many studies have shown that the microenvironment is capable of normalizing tumor cells, suggesting that re-education of stromal cells, rather than targeted ablation per se, may be an effective strategy for treating cancer. Here we discuss the paradoxical roles of the TME during specific stages of cancer progression and metastasis, as well as recent therapeutic attempts to re-educate stromal cells within the TME to have anti-tumorigenic effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elements of cancer immunity and the cancer–immune set point

              Immunotherapy is proving to be an effective therapeutic approach in a variety of cancers. But despite the clinical success of antibodies against the immune regulators CTLA4 and PD-L1/PD-1, only a subset of people exhibit durable responses, suggesting that a broader view of cancer immunity is
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                11 March 2022
                2022
                : 13
                : 819080
                Affiliations
                [1] 1 Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University , Nanjing, China
                [2] 2 Nanjing Medical University , Nanjing, China
                [3] 3 Department of Orthopaedics, Subei People’s Hospital of Jiangsu, Clinical Medical College of Yangzhou University , Yangzhou, China
                Author notes

                Edited by: Xue-Feng Bai, The Ohio State University, United States

                Reviewed by: Yunbin Ye, Fujian Cancer Hospital, China; Cho-Hao Lin, The Ohio State University, United States

                *Correspondence: Jin Fan, fanjin@ 123456njmu.edu.cn

                †These authors have contributed equally to this work

                This article was submitted to Immunological Tolerance and Regulation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2022.819080
                8961865
                35359993
                c54640c0-ab66-4c2a-9b89-1d581ef9c1f8
                Copyright © 2022 Xiong, Li, Wan, Zheng, Zhang, Wang and Fan

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 November 2021
                : 22 February 2022
                Page count
                Figures: 6, Tables: 0, Equations: 1, References: 38, Pages: 13, Words: 5485
                Funding
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Funded by: Program for Changjiang Scholars and Innovative Research Team in University , doi 10.13039/501100018621;
                Categories
                Immunology
                Original Research

                Immunology
                m6a,glioblastoma,tumor microenvironment,immunotherapy,biomark
                Immunology
                m6a, glioblastoma, tumor microenvironment, immunotherapy, biomark

                Comments

                Comment on this article