14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Perfluorocarbon induced alterations in pulmonary mechanics.

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Perfluorocarbon (PFC) compounds induce pulmonary hyperinflation and respiratory distress in some animals following intravenous administration. This study was designed to quantify the effects of two PFC emulsions on lung volumes and compliance and to identify the mechanism of pulmonary hyperinflation. New Zealand White rabbits received isotonic saline (3 ml/kg), Fluosol (15 ml/kg) or Oxygent (90% perfluorooctyl-bromide emulsion, 3 ml/kg). After seven days we measured functional residual capacity, vital capacity, lung compliance and thoracic gas volume. Gross and microscopic histologic examination of the lungs was performed. Functional residual capacity after Fluosol administration was 16.0 +/- 4.0 ml/kg, significantly greater than after saline (3.4 +/- 1.0 ml/kg) or Oxygent (4.0 +/- 1.4 ml/kg). Vital capacity was lower with Fluosol (30 +/- 5.0 ml/kg) than after saline (37 +/- 3.0 ml/kg) or Oxygent (37 +/- 2.0 ml/kg). Thoracic gas volume increased from 9 +/- 1.0 ml/kg (saline) to 16 +/- 13 ml/kg (Oxygent) and 33 +/- 7.0 ml/kg (Fluosol). Lung compliance was the same after saline (1.6 +/- 0.5 ml.cm H2O-1.kg-1) and Oxygent (1.5 +/- 0.3 ml.cm H2O-1.kg-1) but lower after Fluosol (0.9 +/- 0.1 ml.cm H2O-1.kg-1). Gross pathology demonstrated foam exudation from airways of animals receiving PFCs and intra-alveolar foam was identified by light microscopy. These results show intra-airway foam formation causes gas trapping and shifts tidal breathing to a less compliant region of the pressure-volume curve.

          Related collections

          Author and article information

          Journal
          Artif Cells Blood Substit Immobil Biotechnol
          Artificial cells, blood substitutes, and immobilization biotechnology
          1073-1199
          1073-1199
          May 1998
          : 26
          : 3
          Affiliations
          [1 ] Department of Anesthesia, University of Pennsylvania, Philadelphia 19104, USA.
          Article
          9635119
          c546451e-3ff5-4c7c-87b8-b5a8b9000579
          History

          Comments

          Comment on this article