38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dietary Lipid During Late-Pregnancy and Early-Lactation to Manipulate Metabolic and Inflammatory Gene Network Expression in Dairy Cattle Liver with a Focus on PPARs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polyunsaturated (PUFA) long-chain fatty acids (LCFAs) are more potent in eliciting molecular and tissue functional changes in monogastrics than saturated LCFA. From −21 through 10 days relative to parturition dairy cows were fed no supplemental LCFA (control), saturated LCFA (SFAT; mainly 16:0 and 18:0), or fish oil (FISH; high-PUFA). Twenty-seven genes were measured via quantitative RT-PCR in liver tissue on day −14 and day 10. Expression of nuclear receptor co-activators ( CARM1, MED1), LCFA metabolism ( ACSL1, SCD, ACOX1), and inflammation ( IL6, TBK1, IKBKE) genes was lower with SFAT than control on day −14. Expression of SCD, however, was markedly lower with FISH than control or SFAT on both −14 and 10 days. FISH led to further decreases in expression on day 10 of LCFA metabolism ( CD36, PLIN2, ACSL1, ACOX1), intracellular energy ( UCP2, STK11, PRKAA1), de novo cholesterol synthesis ( SREBF2), inflammation ( IL6, TBK1, IKBKE), and nuclear receptor signaling genes ( PPARD, MED1, NRIP1). No change in expression was observed for PPARA and RXRA. The increase of DGAT2, PLIN2, ACSL1, and ACOX1 on day 10 versus −14 in cows fed SFAT suggested upregulation of both beta-oxidation and lipid droplet (LD) formation. However, liver triacylglycerol concentration was similar among treatments. The hepatokine FGF21 and the gluconeogenic genes PC and PCK1 increased markedly on day 10 versus −14 only in controls. At the levels supplemented, the change in the profile of metabolic genes after parturition in cows fed saturated fat suggested a greater capacity for uptake of fatty acids and intracellular handling without excessive storage of LD.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes.

          The synthesis of fatty acids and cholesterol, the building blocks of membranes, is regulated by three membrane-bound transcription factors: sterol regulatory element-binding proteins (SREBP)-1a, -1c, and -2. Their function in liver has been characterized in transgenic mice that overexpress each SREBP isoform and in mice that lack all three nuclear SREBPs as a result of gene knockout of SREBP cleavage-activating protein (SCAP), a protein required for nuclear localization of SREBPs. Here, we use oligonucleotide arrays hybridized with RNA from livers of three lines of mice (transgenic for SREBP-1a, transgenic for SREBP-2, and knockout for SCAP) to identify genes that are likely to be direct targets of SREBPs in liver. A total of 1,003 genes showed statistically significant increased expression in livers of transgenic SREBP-1a mice, 505 increased in livers of transgenic SREBP-2 mice, and 343 showed decreased expression in Scap-/- livers. A subset of 33 genes met the stringent combinatorial criteria of induction in both SREBP transgenics and decreased expression in SCAP-deficient mice. Of these 33 genes, 13 were previously identified as direct targets of SREBP action. Of the remaining 20 genes, 13 encode enzymes or carrier proteins involved in cholesterol metabolism, 3 participate in fatty acid metabolism, and 4 have no known connection to lipid metabolism. Through application of stringent combinatorial criteria, the transgenic/knockout approach allows identification of genes whose activities are likely to be controlled directly by one family of transcription factors, in this case the SREBPs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis.

            The majority of eukaryotic cells synthesize neutral lipids and package them into cytosolic lipid droplets. In vertebrates, triacylglycerol-rich lipid droplets of adipocytes provide a major energy storage depot for the body, whereas cholesteryl ester-rich droplets of many other cells provide building materials for local membrane synthesis and repair. These lipid droplets are coated with one or more of five members of the perilipin family of proteins: adipophilin, TIP47, OXPAT/MLDP, S3-12, and perilipin. Members of this family share varying levels of sequence similarity, lipid droplet association, and functions in stabilizing lipid droplets. The most highly studied member of the family, perilipin, is the most abundant protein on the surfaces of adipocyte lipid droplets, and the major substrate for cAMP-dependent protein kinase [protein kinase A (PKA)] in lipolytically stimulated adipocytes. Perilipin serves important functions in the regulation of basal and hormonally stimulated lipolysis. Under basal conditions, perilipin restricts the access of cytosolic lipases to lipid droplets and thus promotes triacylglycerol storage. In times of energy deficit, perilipin is phosphorylated by PKA and facilitates maximal lipolysis by hormone-sensitive lipase and adipose triglyceride lipase. A model is discussed whereby perilipin serves as a dynamic scaffold to coordinate the access of enzymes to the lipid droplet in a manner that is responsive to the metabolic status of the adipocyte.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production.

              The gene Ucp2 is a member of a family of genes found in animals and plants, encoding a protein homologous to the brown fat uncoupling protein Ucp1 (refs 1-3). As Ucp2 is widely expressed in mammalian tissues, uncouples respiration and resides within a region of genetic linkage to obesity, a role in energy dissipation has been proposed. We demonstrate here, however, that mice lacking Ucp2 following targeted gene disruption are not obese and have a normal response to cold exposure or high-fat diet. Expression of Ucp2 is robust in spleen, lung and isolated macrophages, suggesting a role for Ucp2 in immunity or inflammatory responsiveness. We investigated the response to infection with Toxoplasma gondii in Ucp2-/- mice, and found that they are completely resistant to infection, in contrast with the lethality observed in wild-type littermates. Parasitic cysts and inflammation sites in brain were significantly reduced in Ucp2-/- mice (63% decrease, P<0.04). Macrophages from Ucp2-/- mice generated more reactive oxygen species than wild-type mice (80% increase, P<0.001) in response to T. gondii, and had a fivefold greater toxoplasmacidal activity in vitro compared with wild-type mice (P<0.001 ), which was absent in the presence of a quencher of reactive oxygen species (ROS). Our results indicate a role for Ucp2 in the limitation of ROS and macrophage-mediated immunity.
                Bookmark

                Author and article information

                Journal
                Gene Regul Syst Bio
                Gene Regul Syst Bio
                Gene Regulation and Systems Biology
                Libertas Academica
                1177-6250
                2013
                11 June 2013
                : 7
                : 103-123
                Affiliations
                [1 ]Mammalian NutriPhysioGenomics Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA.
                [2 ]Embrapa Rondônia, Porto Velho, Brasil.
                [3 ]Department of Animal and Food Science, Texas Tech University, Lubbock, TX, USA.
                [4 ]NUPEEC, Departamento Clínicas Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brasil.
                [5 ]Department of Animal Science, University of California, Davis, Davis, CA, USA.
                Author notes
                Corresponding author email: jloor@ 123456illinois.edu
                Article
                grsb-7-2013-103
                10.4137/GRSB.S12005
                3699062
                23825924
                c56fef08-a157-4bd6-a67e-6e52a24b6bab
                © 2013 the author(s), publisher and licensee Libertas Academica Ltd.

                This is an open access article published under the Creative Commons CC-BY-NC 3.0 license.

                History
                Categories
                Original Research

                Genetics
                dairy cows,fat supplementation,hepatic gene network
                Genetics
                dairy cows, fat supplementation, hepatic gene network

                Comments

                Comment on this article