598
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chronic Exposure to Fine Particles and Mortality: An Extended Follow-up of the Harvard Six Cities Study from 1974 to 2009

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Epidemiologic studies have reported associations between fine particles (aerodynamic diameter ≤ 2.5 µm; PM 2.5) and mortality. However, concerns have been raised regarding the sensitivity of the results to model specifications, lower exposures, and averaging time.

          Objective: We addressed these issues using 11 additional years of follow-up of the Harvard Six Cities study, incorporating recent lower exposures.

          Methods: We replicated the previously applied Cox regression, and examined different time lags, the shape of the concentration–response relationship using penalized splines, and changes in the slope of the relation over time. We then conducted Poisson survival analysis with time-varying effects for smoking, sex, and education.

          Results: Since 2001, average PM 2.5 levels, for all six cities, were < 18 µg/m 3. Each increase in PM 2.5 (10 µg/m 3) was associated with an adjusted increased risk of all-cause mortality (PM 2.5 average on previous year) of 14% [95% confidence interval (CI): 7, 22], and with 26% (95% CI: 14, 40) and 37% (95% CI: 7, 75) increases in cardiovascular and lung-cancer mortality (PM 2.5 average of three previous years), respectively. The concentration–response relationship was linear down to PM 2.5 concentrations of 8 µg/m 3. Mortality rate ratios for PM 2.5 fluctuated over time, but without clear trends despite a substantial drop in the sulfate fraction. Poisson models produced similar results.

          Conclusions: These results suggest that further public policy efforts that reduce fine particulate matter air pollution are likely to have continuing public health benefits.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease.

          Epidemiologic studies have linked long-term exposure to fine particulate matter air pollution (PM) to broad cause-of-death mortality. Associations with specific cardiopulmonary diseases might be useful in exploring potential mechanistic pathways linking exposure and mortality. General pathophysiological pathways linking long-term PM exposure with mortality and expected patterns of PM mortality with specific causes of death were proposed a priori. Vital status, risk factor, and cause-of-death data, collected by the American Cancer Society as part of the Cancer Prevention II study, were linked with air pollution data from United States metropolitan areas. Cox Proportional Hazard regression models were used to estimate PM-mortality associations with specific causes of death. Long-term PM exposures were most strongly associated with mortality attributable to ischemic heart disease, dysrhythmias, heart failure, and cardiac arrest. For these cardiovascular causes of death, a 10-microg/m3 elevation in fine PM was associated with 8% to 18% increases in mortality risk, with comparable or larger risks being observed for smokers relative to nonsmokers. Mortality attributable to respiratory disease had relatively weak associations. Fine particulate air pollution is a risk factor for cause-specific cardiovascular disease mortality via mechanisms that likely include pulmonary and systemic inflammation, accelerated atherosclerosis, and altered cardiac autonomic function. Although smoking is a much larger risk factor for cardiovascular disease mortality, exposure to fine PM imposes additional effects that seem to be at least additive to if not synergistic with smoking.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution.

            Associations have been found between day-to-day particulate air pollution and increased risk of various adverse health outcomes, including cardiopulmonary mortality. However, studies of health effects of long-term particulate air pollution have been less conclusive. To assess the relationship between long-term exposure to fine particulate air pollution and all-cause, lung cancer, and cardiopulmonary mortality. Vital status and cause of death data were collected by the American Cancer Society as part of the Cancer Prevention II study, an ongoing prospective mortality study, which enrolled approximately 1.2 million adults in 1982. Participants completed a questionnaire detailing individual risk factor data (age, sex, race, weight, height, smoking history, education, marital status, diet, alcohol consumption, and occupational exposures). The risk factor data for approximately 500 000 adults were linked with air pollution data for metropolitan areas throughout the United States and combined with vital status and cause of death data through December 31, 1998. All-cause, lung cancer, and cardiopulmonary mortality. Fine particulate and sulfur oxide--related pollution were associated with all-cause, lung cancer, and cardiopulmonary mortality. Each 10-microg/m(3) elevation in fine particulate air pollution was associated with approximately a 4%, 6%, and 8% increased risk of all-cause, cardiopulmonary, and lung cancer mortality, respectively. Measures of coarse particle fraction and total suspended particles were not consistently associated with mortality. Long-term exposure to combustion-related fine particulate air pollution is an important environmental risk factor for cardiopulmonary and lung cancer mortality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clearing the air: a review of the effects of particulate matter air pollution on human health.

              The World Health Organization estimates that particulate matter (PM) air pollution contributes to approximately 800,000 premature deaths each year, ranking it the 13th leading cause of mortality worldwide. However, many studies show that the relationship is deeper and far more complicated than originally thought. PM is a portion of air pollution that is made up of extremely small particles and liquid droplets containing acids, organic chemicals, metals, and soil or dust particles. PM is categorized by size and continues to be the fraction of air pollution that is most reliably associated with human disease. PM is thought to contribute to cardiovascular and cerebrovascular disease by the mechanisms of systemic inflammation, direct and indirect coagulation activation, and direct translocation into systemic circulation. The data demonstrating PM's effect on the cardiovascular system are strong. Populations subjected to long-term exposure to PM have a significantly higher cardiovascular incident and mortality rate. Short-term acute exposures subtly increase the rate of cardiovascular events within days of a pollution spike. The data are not as strong for PM's effects on cerebrovascular disease, though some data and similar mechanisms suggest a lesser result with smaller amplitude. Respiratory diseases are also exacerbated by exposure to PM. PM causes respiratory morbidity and mortality by creating oxidative stress and inflammation that leads to pulmonary anatomic and physiologic remodeling. The literature shows PM causes worsening respiratory symptoms, more frequent medication use, decreased lung function, recurrent health care utilization, and increased mortality. PM exposure has been shown to have a small but significant adverse effect on cardiovascular, respiratory, and to a lesser extent, cerebrovascular disease. These consistent results are shown by multiple studies with varying populations, protocols, and regions. The data demonstrate a dose-dependent relationship between PM and human disease, and that removal from a PM-rich environment decreases the prevalence of these diseases. While further study is needed to elucidate the effects of composition, chemistry, and the PM effect on susceptible populations, the preponderance of data shows that PM exposure causes a small but significant increase in human morbidity and mortality. Most sources agree on certain "common sense" recommendations, although there are lonely limited data to support them. Indoor PM exposure can be reduced by the usage of air conditioning and particulate filters, decreasing indoor combustion for heating and cooking, and smoking cessation. Susceptible populations, such as the elderly or asthmatics, may benefit from limiting their outdoor activity during peak traffic periods or poor air quality days. These simple changes may benefit individual patients in both short-term symptomatic control and long-term cardiovascular and respiratory complications.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                28 March 2012
                July 2012
                : 120
                : 7
                : 965-970
                Affiliations
                [1 ]Department of Environmental Health, and
                [2 ]Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
                [3 ]Channing Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
                Author notes
                Address correspondence to J. Lepeule, Landmark Center West, Room 404C, 401 Park Dr., Boston, MA 02215, USA. Telephone: (617) 384-8807. Fax: (617) 384-8728. E-mail: jlepeule@ 123456hsph.harvard.edu
                Article
                ehp.1104660
                10.1289/ehp.1104660
                3404667
                22456598
                c5fddd23-8099-4d25-a235-0504b011af1d
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Research

                Public health
                follow-up studies,lag,threshold,cohort studies,mortality,lung cancer,air pollution,concentration–response,pm2.5,particles

                Comments

                Comment on this article