53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differences in gray matter structure correlated to nationalism and patriotism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nationalism and patriotism both entail positive evaluations of one’s nation. However, the former inherently involves derogation of other nations, whereas the latter is independent of comparisons with other nations. We used voxel-based morphometry and psychological measures and determined nationalism and patriotism’s association with gray matter density (rGMD) and their cognitive nature in healthy individuals (433 men and 344 women; age, 20.7 ± 1.9 years) using whole-brain multiple regression analyses and post hoc analyses. We found higher nationalism associated with greater rGMD in (a) areas of the posterior cingulate cortex and greater rGMD in (b) the orbitofrontal cortex, and smaller rGMD in (c) the right amygdala area. Furthermore, we found higher patriotism associated with smaller rGMD in the (d) rostrolateral prefrontal cortex. Post hoc analyses revealed the mean rGMD of the cluster (a) associated with compassion, that of (b) associated with feeling of superiority, that of (c) associated with suicide ideation, and that of (d) associated with quality of life. These results indicate that individual nationalism may be mediated by neurocognitive mechanisms in social-related areas and limbic neural mechanisms, whereas patriotism may be mediated by neurocognitive mechanisms in areas related to well-being.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: not found
          • Article: not found

          The assessment and analysis of handedness: The Edinburgh inventory

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The brain's default network: anatomy, function, and relevance to disease.

            Thirty years of brain imaging research has converged to define the brain's default network-a novel and only recently appreciated brain system that participates in internal modes of cognition. Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment. Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system. Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others. Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems. The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation. The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations. These two subsystems converge on important nodes of integration including the posterior cingulate cortex. The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world. We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Power failure: why small sample size undermines the reliability of neuroscience.

              A study with low statistical power has a reduced chance of detecting a true effect, but it is less well appreciated that low power also reduces the likelihood that a statistically significant result reflects a true effect. Here, we show that the average statistical power of studies in the neurosciences is very low. The consequences of this include overestimates of effect size and low reproducibility of results. There are also ethical dimensions to this problem, as unreliable research is inefficient and wasteful. Improving reproducibility in neuroscience is a key priority and requires attention to well-established but often ignored methodological principles.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                15 July 2016
                2016
                : 6
                : 29912
                Affiliations
                [1 ]Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University , Sendai, Japan
                [2 ]Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University , Sendai, Japan
                [3 ]Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University , Sendai, Japan
                [4 ]Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University , Sendai, Japan
                [5 ]Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University , Sendai, Japan
                [6 ]Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University , Sendai, Japan
                [7 ]Graduate Schools for Law and Politics, The University of Tokyo , Bunkyo, Tokyo, Japan
                [8 ]Japan Society for the Promotion of Science , Tokyo, Japan
                [9 ]Faculty of Medicine, Tohoku University , Sendai, Japan
                Author notes
                Article
                srep29912
                10.1038/srep29912
                4945903
                27418362
                c71eab10-e782-4746-a84f-767f1278530b
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 11 February 2015
                : 20 June 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article