12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advances and perspectives in selecting resistance traits against the parasitic mite Varroa destructor in honey bees

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In spite of the implementation of control strategies in honey bee ( Apis mellifera) keeping, the invasive parasitic mite Varroa destructor remains one of the main causes of colony losses in numerous countries. Therefore, this parasite represents a serious threat to beekeeping and agro-ecosystems that benefit from the pollination services provided by honey bees. To maintain their stocks, beekeepers have to treat their colonies with acaricides every year. Selecting lineages that are resistant to infestations is deemed to be a more sustainable approach.

          Review

          Over the last three decades, numerous selection programs have been initiated to improve the host–parasite relationship and to support honey bee survival in the presence of the parasite without the need for acaricide treatments. Although resistance traits have been included in the selection strategy of honey bees, it has not been possible to globally solve the V. destructor problem. In this study, we review the literature on the reasons that have potentially limited the success of such selection programs. We compile the available information to assess the relevance of selected traits and the potential environmental effects that distort trait expression and colony survival. Limitations to the implementation of these traits in the field are also discussed.

          Conclusions

          Improving our knowledge of the mechanisms underlying resistance to V. destructor to increase trait relevance, optimizing selection programs to reduce environmental effects, and communicating selection outcomes are all crucial to efforts aiming at establishing a balanced relationship between the invasive parasite and its new host.

          Related collections

          Most cited references345

          • Record: found
          • Abstract: found
          • Article: not found

          Global pollinator declines: trends, impacts and drivers.

          Pollinators are a key component of global biodiversity, providing vital ecosystem services to crops and wild plants. There is clear evidence of recent declines in both wild and domesticated pollinators, and parallel declines in the plants that rely upon them. Here we describe the nature and extent of reported declines, and review the potential drivers of pollinator loss, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them. Pollinator declines can result in loss of pollination services which have important negative ecological and economic impacts that could significantly affect the maintenance of wild plant diversity, wider ecosystem stability, crop production, food security and human welfare. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bee declines driven by combined stress from parasites, pesticides, and lack of flowers.

            Bees are subject to numerous pressures in the modern world. The abundance and diversity of flowers has declined; bees are chronically exposed to cocktails of agrochemicals, and they are simultaneously exposed to novel parasites accidentally spread by humans. Climate change is likely to exacerbate these problems in the future. Stressors do not act in isolation; for example, pesticide exposure can impair both detoxification mechanisms and immune responses, rendering bees more susceptible to parasites. It seems certain that chronic exposure to multiple interacting stressors is driving honey bee colony losses and declines of wild pollinators, but such interactions are not addressed by current regulatory procedures, and studying these interactions experimentally poses a major challenge. In the meantime, taking steps to reduce stress on bees would seem prudent; incorporating flower-rich habitat into farmland, reducing pesticide use through adopting more sustainable farming methods, and enforcing effective quarantine measures on bee movements are all practical measures that should be adopted. Effective monitoring of wild pollinator populations is urgently needed to inform management strategies into the future.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Economic valuation of the vulnerability of world agriculture confronted with pollinator decline

                Bookmark

                Author and article information

                Contributors
                matthieu.guichard@agroscope.admin.ch
                vincent.dietemann@agroscope.admin.ch
                markus.neuditschko@agroscope.admin.ch
                benjamin.dainat@agroscope.admin.ch
                Journal
                Genet Sel Evol
                Genet Sel Evol
                Genetics, Selection, Evolution : GSE
                BioMed Central (London )
                0999-193X
                1297-9686
                27 November 2020
                27 November 2020
                2020
                : 52
                : 71
                Affiliations
                [1 ]GRID grid.417771.3, ISNI 0000 0004 4681 910X, Agroscope, Swiss Bee Research Centre, ; Schwarzenburgstrasse 161, 3003 Bern, Switzerland
                [2 ]GRID grid.9851.5, ISNI 0000 0001 2165 4204, Department of Ecology and Evolution, , Biophore, UNIL-Sorge, University of Lausanne, ; 1015 Lausanne, Switzerland
                Article
                591
                10.1186/s12711-020-00591-1
                7694340
                33246402
                c7d35cc1-13d4-4e01-bbd4-c1fd838b22f6
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 20 March 2020
                : 13 November 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100010473, Bundesamt für Landwirtschaft;
                Award ID: 627000708
                Award Recipient :
                Categories
                Review
                Custom metadata
                © L'Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE) 2020

                Genetics
                Genetics

                Comments

                Comment on this article