2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exosomal miRNA-16-5p Derived From M1 Macrophages Enhances T Cell-Dependent Immune Response by Regulating PD-L1 in Gastric Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macrophages have an affinity to developing tumors and have been shown to play a role in tumor combat and immune surveillance. However, the exact mechanism by which macrophages participate in the anti-tumor immune response remains unclear. Hence, the current study aimed to identify the effect of macrophages on gastric cancer (GC) cells via exosomes. Paired cancerous, tumor-adjacent, and non-cancerous stomach tissues were initially from 68 GC patients. T cells were isolated from peripheral blood mononuclear cells (PBMCs) obtained from both the GC patients as well as the healthy donors. Next, the exosomes were isolated from LPS and IFN-γ-induced PBMCs (M1 macrophages) and co-cultured with human GC cells. Another co-culture system comprised of CD3 + T cells and exosomes-treated GC cells was then performed. BALB/c mice and NOD/SCID nude mice were prepared for effects of exosomal miR-16-5p on tumor growth and anti-tumor immune response in GC in vivo. A relationship between M1 macrophages and the poor survival of GC patients was identified, while they secreted exosomes to inhibit GC development and activate a T cell-dependent immune response. Our results revealed that miR-16-5p was transferred intercellularly from M1 macrophages to GC cells via exosomes and targeted PD-L1. M1 macrophage-derived exosomes containing miR-16-5p were found to trigger a T cell immune response which inhibited tumor formation both in vitro and in vivo by decreasing the expression of PD-L1. Taken together, the key findings of the current study suggest that M1 macrophage-derived exosomes carrying miR-16-5p exert an inhibitory effect on GC progression through activation of T cell immune response via PD-L1. Our study highlights the promise of M1 macrophages as a potential cell-based therapy for GC treatment by increasing miR-16-5p in exosomes.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics in China, 2015.

          With increasing incidence and mortality, cancer is the leading cause of death in China and is a major public health problem. Because of China's massive population (1.37 billion), previous national incidence and mortality estimates have been limited to small samples of the population using data from the 1990s or based on a specific year. With high-quality data from an additional number of population-based registries now available through the National Central Cancer Registry of China, the authors analyzed data from 72 local, population-based cancer registries (2009-2011), representing 6.5% of the population, to estimate the number of new cases and cancer deaths for 2015. Data from 22 registries were used for trend analyses (2000-2011). The results indicated that an estimated 4292,000 new cancer cases and 2814,000 cancer deaths would occur in China in 2015, with lung cancer being the most common incident cancer and the leading cause of cancer death. Stomach, esophageal, and liver cancers were also commonly diagnosed and were identified as leading causes of cancer death. Residents of rural areas had significantly higher age-standardized (Segi population) incidence and mortality rates for all cancers combined than urban residents (213.6 per 100,000 vs 191.5 per 100,000 for incidence; 149.0 per 100,000 vs 109.5 per 100,000 for mortality, respectively). For all cancers combined, the incidence rates were stable during 2000 through 2011 for males (+0.2% per year; P = .1), whereas they increased significantly (+2.2% per year; P < .05) among females. In contrast, the mortality rates since 2006 have decreased significantly for both males (-1.4% per year; P < .05) and females (-1.1% per year; P < .05). Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors, while increasing the effectiveness of clinical care delivery, particularly for those living in rural areas and in disadvantaged populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation

            Studies on monocyte and macrophage biology and differentiation have revealed the pleiotropic activities of these cells. Macrophages are tissue sentinels that maintain tissue integrity by eliminating/repairing damaged cells and matrices. In this M2-like mode, they can also promote tumor growth. Conversely, M1-like macrophages are key effector cells for the elimination of pathogens, virally infected, and cancer cells. Macrophage differentiation from monocytes occurs in the tissue in concomitance with the acquisition of a functional phenotype that depends on microenvironmental signals, thereby accounting for the many and apparently opposed macrophage functions. Many questions arise. When monocytes differentiate into macrophages in a tissue (concomitantly adopting a specific functional program, M1 or M2), do they all die during the inflammatory reaction, or do some of them survive? Do those that survive become quiescent tissue macrophages, able to react as naïve cells to a new challenge? Or, do monocyte-derived tissue macrophages conserve a “memory” of their past inflammatory activation? This review will address some of these important questions under the general framework of the role of monocytes and macrophages in the initiation, development, resolution, and chronicization of inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention.

              Less than a century ago, gastric cancer was the most common cancer in the United States and perhaps throughout the world. Despite its worldwide decline in incidence over the past century, gastric cancer remains a major killer across the globe. This article reviews the epidemiology, screening, and prevention of gastric cancer. We first discuss the descriptive epidemiology of gastric cancer, including its incidence, survival, mortality, and trends over time. Next, we characterize the risk factors for gastric cancer, both environmental and genetic. Serologic markers and histological precursor lesions of gastric cancer and early detection of gastric cancer using these markers are reviewed. Finally, we discuss prevention strategies and provide suggestions for further research.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                30 November 2020
                2020
                : 8
                : 572689
                Affiliations
                [1] 1Department of General Surgery, The First Affiliated Hospital of Harbin Medical University , Harbin, China
                [2] 2General Hospital of Heilongjiang Province Land Reclamation Bureau , Harbin, China
                Author notes

                Edited by: Sandra Donnini, University of Siena, Italy

                Reviewed by: Prasun K. Datta, Tulane University, United States; Valerio Ciccone, University of Siena, Italy

                *Correspondence: Dawei Wang, Wangdw_1982@ 123456163.com

                These authors have contributed equally to this work

                This article was submitted to Cellular Biochemistry, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2020.572689
                7734296
                33330451
                c8475d24-2621-4e9b-ad2c-17e5cd39d877
                Copyright © 2020 Li, Suo, Long, Gao, Song, Zhang, Feng, Shang and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 June 2020
                : 27 October 2020
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 26, Pages: 13, Words: 0
                Categories
                Cell and Developmental Biology
                Original Research

                gastric cancer,m1 macrophage,microrna-16-5p,t cell immune response,pd-l1

                Comments

                Comment on this article