Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Two-photon calcium imaging during fictive navigation in virtual environments

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A full understanding of nervous system function requires recording from large populations of neurons during naturalistic behaviors. Here we enable paralyzed larval zebrafish to fictively navigate two-dimensional virtual environments while we record optically from many neurons with two-photon imaging. Electrical recordings from motor nerves in the tail are decoded into intended forward swims and turns, which are used to update a virtual environment displayed underneath the fish. Several behavioral features—such as turning responses to whole-field motion and dark avoidance—are well-replicated in this virtual setting. We readily observed neuronal populations in the hindbrain with laterally selective responses that correlated with right or left optomotor behavior. We also observed neurons in the habenula, pallium, and midbrain with response properties specific to environmental features. Beyond single-cell correlations, the classification of network activity in such virtual settings promises to reveal principles of brainwide neural dynamics during behavior.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Neural population dynamics during reaching

          Most theories of motor cortex have assumed that neural activity represents movement parameters. This view derives from an analogous approach to primary visual cortex, where neural activity represents patterns of light. Yet it is unclear how well that analogy holds. Single-neuron responses in motor cortex appear strikingly complex, and there is marked disagreement regarding which movement parameters are represented. A better analogy might be with other motor systems, where a common principle is rhythmic neural activity. We found that motor cortex responses during reaching contain a brief but strong oscillatory component, something quite unexpected for a non-periodic behavior. Oscillation amplitude and phase followed naturally from the preparatory state, suggesting a mechanistic role for preparatory neural activity. These results demonstrate unexpected yet surprisingly simple structure in the population response. That underlying structure explains many of the confusing features of individual-neuron responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optimization of a GCaMP calcium indicator for neural activity imaging.

            Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by severalfold, creating a family of "GCaMP5" sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2- to 3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Choice-specific sequences in parietal cortex during a virtual-navigation decision task

              The posterior parietal cortex (PPC) plays an important role in many cognitive behaviors; however, the neural circuit dynamics underlying PPC function are not well understood. Here we optically imaged the spatial and temporal activity patterns of neuronal populations in mice performing a PPC-dependent task that combined a perceptual decision and memory-guided navigation in a virtual environment. Individual neurons had transient activation staggered relative to one another in time, forming a sequence of neuronal activation spanning the entire length of a task trial. Distinct sequences of neurons were triggered on trials with opposite behavioral choices and defined divergent, choice-specific trajectories through a state space of neuronal population activity. Cells participating in the different sequences and at distinct time points in the task were anatomically intermixed over microcircuit length scales (< 100 micrometers). During working memory decision tasks the PPC may therefore perform computations through sequence-based circuit dynamics, rather than long-lived stable states, implemented using anatomically intermingled microcircuits.
                Bookmark

                Author and article information

                Journal
                Front Neural Circuits
                Front Neural Circuits
                Front. Neural Circuits
                Frontiers in Neural Circuits
                Frontiers Media S.A.
                1662-5110
                06 June 2013
                2013
                : 7
                : 104
                Affiliations
                [1] 1Department of Molecular and Cellular Biology, Harvard University Cambridge, MA, USA
                [2] 2Janelia Farm Research Campus, Howard Hughes Medical Institute Ashburn, VA, USA
                Author notes

                Edited by: Rainer W. Friedrich, Friedrich Miescher Institute for Biomedical Research, Switzerland

                Reviewed by: Alexander Borst, Max Planck Institute of Neurobiology, Germany; Daniel Dombeck, Northwestern University, USA

                *Correspondence: Misha B. Ahrens, Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA e-mail: ahrensm@ 123456janelia.hhmi.org ;
                Florian Engert, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA e-mail: florian@ 123456mcb.harvard.edu

                †These authors have contributed equally to this work

                Article
                10.3389/fncir.2013.00104
                3674334
                23761738
                c853fef5-1d7f-4f5c-84ff-b1f4bad41ddb
                Copyright © 2013 Ahrens, Huang, Narayan, Mensh and Engert.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 16 April 2013
                : 14 May 2013
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 37, Pages: 13, Words: 8724
                Categories
                Neuroscience
                Methods Article

                Neurosciences
                zebrafish,virtual reality,two-photon calcium imaging,behavior,sensorimotor transformations,motor control

                Comments

                Comment on this article