9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanoparticles as contrast agents for brain nuclear magnetic resonance imaging in Alzheimer's disease diagnosis

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A comprehensive review of recent advances in the development of nanoparticle-based contrast agents for the diagnosis of AD by MRI.

          Abstract

          Nuclear Magnetic Resonance Imaging (MRI) of amyloid plaques is a powerful non-invasive approach for the early and accurate diagnosis of Alzheimer's disease (AD) along with clinical observations of behavioral changes and cognitive impairment. The present article aims at giving a critical and comprehensive review of recent advances in the development of nanoparticle-based contrast agents for brain MRI. Nanoparticles considered for the MRI of AD must comply with a highly stringent set of requirements including low toxicity and the ability to cross the blood–brain-barrier. In addition, to reach an optimal signal-to-noise ratio, they must exhibit a specific ability to target amyloid plaques, which can be achieved by grafting antibodies, peptides or small molecules. Finally, we propose to consider new directions for the future of MRI in the context of Alzheimer's disease, in particular by enhancing the performances of contrast agents and by including therapeutic functionalities following a theranostic strategy.

          Related collections

          Most cited references232

          • Record: found
          • Abstract: found
          • Article: not found

          RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain.

          Amyloid-beta peptide (Abeta) interacts with the vasculature to influence Abeta levels in the brain and cerebral blood flow, providing a means of amplifying the Abeta-induced cellular stress underlying neuronal dysfunction and dementia. Systemic Abeta infusion and studies in genetically manipulated mice show that Abeta interaction with receptor for advanced glycation end products (RAGE)-bearing cells in the vessel wall results in transport of Abeta across the blood-brain barrier (BBB) and expression of proinflammatory cytokines and endothelin-1 (ET-1), the latter mediating Abeta-induced vasoconstriction. Inhibition of RAGE-ligand interaction suppresses accumulation of Abeta in brain parenchyma in a mouse transgenic model. These findings suggest that vascular RAGE is a target for inhibiting pathogenic consequences of Abeta-vascular interactions, including development of cerebral amyloidosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy.

            At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. More specifically for drug delivery purposes, the use of nanoparticles is attracting increasing attention due to their unique capabilities and their negligible side effects not only in cancer therapy but also in the treatment of other ailments. Among all types of nanoparticles, biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) with proper surface architecture and conjugated targeting ligands/proteins have attracted a great deal of attention for drug delivery applications. This review covers recent advances in the development of SPIONs together with their possibilities and limitations from fabrication to application in drug delivery. In addition, the state-of-the-art synthetic routes and surface modification of desired SPIONs for drug delivery purposes are described. Copyright © 2010 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview.

              Macrophages are one of the principal immune effector cells that play essential roles as secretory, phagocytic, and antigen-presenting cells in the immune system. In this study, we address the issue of cytotoxicity and immunogenic effects of gold nanoparticles on RAW264.7 macrophage cells. The cytotoxicity of gold nanoparticles has been correlated with a detailed study of their endocytotic uptake using various microscopy tools such as atomic force microscopy (AFM), confocal-laser-scanning microscopy (CFLSM), and transmission electron microscopy (TEM). Our findings suggest that Au(0) nanoparticles are not cytotoxic, reduce the production of reactive oxygen and nitrite species, and do not elicit secretion of proinflammatory cytokines TNF-alpha and IL1-beta, making them suitable candidates for nanomedicine. AFM measurements suggest that gold nanoparticles are internalized inside the cell via a mechanism involving pinocytosis, while CFLSM and TEM studies indicate their internalization in lysosomal bodies arranged in perinuclear fashion. Our studies thus underline the noncytotoxic, nonimmunogenic, and biocompatible properties of gold nanoparticles with the potential for application in nanoimmunology, nanomedicine, and nanobiotechnology.
                Bookmark

                Author and article information

                Journal
                JMCBDV
                Journal of Materials Chemistry B
                J. Mater. Chem. B
                Royal Society of Chemistry (RSC)
                2050-750X
                2050-7518
                2017
                2017
                : 5
                : 35
                : 7216-7237
                Article
                10.1039/C7TB01599B
                c914b7ac-2bb1-405d-8c88-d6e5995c83a5
                © 2017
                History

                Comments

                Comment on this article