11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting non-coding RNAs in unstable atherosclerotic plaques: Mechanism, regulation, possibilities, and limitations

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiovascular diseases (CVDs) caused by arteriosclerosis are the leading cause of death and disability worldwide. In the late stages of atherosclerosis, the atherosclerotic plaque gradually expands in the blood vessels, resulting in vascular stenosis. When the unstable plaque ruptures and falls off, it blocks the vessel causing vascular thrombosis, leading to strokes, myocardial infarctions, and a series of other serious diseases that endanger people's lives. Therefore, regulating plaque stability is the main means used to address the high mortality associated with CVDs. The progression of the atherosclerotic plaque is a complex integration of vascular cell apoptosis, lipid metabolism disorders, inflammatory cell infiltration, vascular smooth muscle cell migration, and neovascular infiltration. More recently, emerging evidence has demonstrated that non-coding RNAs (ncRNAs) play a significant role in regulating the pathophysiological process of atherosclerotic plaque formation by affecting the biological functions of the vasculature and its associated cells. The purpose of this paper is to comprehensively review the regulatory mechanisms involved in the susceptibility of atherosclerotic plaque rupture, discuss the limitations of current approaches to treat plaque instability, and highlight the potential clinical value of ncRNAs as novel diagnostic biomarkers and potential therapeutic strategies to improve plaque stability and reduce the risk of major cardiovascular events.

          Related collections

          Most cited references164

          • Record: found
          • Abstract: found
          • Article: not found

          The multilayered complexity of ceRNA crosstalk and competition.

          Recent reports have described an intricate interplay among diverse RNA species, including protein-coding messenger RNAs and non-coding RNAs such as long non-coding RNAs, pseudogenes and circular RNAs. These RNA transcripts act as competing endogenous RNAs (ceRNAs) or natural microRNA sponges - they communicate with and co-regulate each other by competing for binding to shared microRNAs, a family of small non-coding RNAs that are important post-transcriptional regulators of gene expression. Understanding this novel RNA crosstalk will lead to significant insight into gene regulatory networks and have implications in human development and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of immune responses by extracellular vesicles.

            Extracellular vesicles, including exosomes, are small membrane vesicles derived from multivesicular bodies or from the plasma membrane. Most, if not all, cell types release extracellular vesicles, which then enter the bodily fluids. These vesicles contain a subset of proteins, lipids and nucleic acids that are derived from the parent cell. It is thought that extracellular vesicles have important roles in intercellular communication, both locally and systemically, as they transfer their contents, including proteins, lipids and RNAs, between cells. Extracellular vesicles are involved in numerous physiological processes, and vesicles from both non-immune and immune cells have important roles in immune regulation. Moreover, extracellular vesicle-based therapeutics are being developed and clinically tested for the treatment of inflammatory diseases, autoimmune disorders and cancer. Given the tremendous therapeutic potential of extracellular vesicles, this Review focuses on their role in modulating immune responses, as well as their potential therapeutic applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Progress and challenges in translating the biology of atherosclerosis.

              Atherosclerosis is a chronic disease of the arterial wall, and a leading cause of death and loss of productive life years worldwide. Research into the disease has led to many compelling hypotheses about the pathophysiology of atherosclerotic lesion formation and of complications such as myocardial infarction and stroke. Yet, despite these advances, we still lack definitive evidence to show that processes such as lipoprotein oxidation, inflammation and immunity have a crucial involvement in human atherosclerosis. Experimental atherosclerosis in animals furnishes an important research tool, but extrapolation to humans requires care. Understanding how to combine experimental and clinical science will provide further insight into atherosclerosis and could lead to new clinical applications.
                Bookmark

                Author and article information

                Journal
                Int J Biol Sci
                Int J Biol Sci
                ijbs
                International Journal of Biological Sciences
                Ivyspring International Publisher (Sydney )
                1449-2288
                2021
                3 August 2021
                : 17
                : 13
                : 3413-3427
                Affiliations
                [1 ]Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China.
                [2 ]Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
                [3 ]Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao 266000, China.
                Author notes
                ✉ Corresponding authors: Tao Yu, PhD, Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, China; Center for Regenerative Medicine, Institute for translational medicine, School of Basic Medicine, Qingdao University, 38 Deng Zhou Road, Qingdao 266021, China. Tel: +86-532-82991791; fax: +86-532-82991791; E-mail: yutao0112@ 123456qdu.edu.cn .

                #These authors contributed equally to this paper.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijbsv17p3413
                10.7150/ijbs.62506
                8416736
                34512156
                cab85fa4-9b2c-4a66-8567-0000ca27fa56
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 9 May 2021
                : 23 July 2021
                Categories
                Review

                Life sciences
                atherosclerotic plaques,plaque instability,plaque rupture,non-coding rnas
                Life sciences
                atherosclerotic plaques, plaque instability, plaque rupture, non-coding rnas

                Comments

                Comment on this article