59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Invention as a Combinatorial Process: Evidence from U.S. Patents

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Invention has been commonly conceptualized as a search over a space of combinatorial possibilities. Despite the existence of a rich literature, spanning a variety of disciplines, elaborating on the recombinant nature of invention, we lack a formal and quantitative characterization of the combinatorial process underpinning inventive activity. Here we utilize U.S. patent records dating from 1790 to 2010 to formally characterize the invention as a combinatorial process. To do this we treat patented inventions as carriers of technologies and avail ourselves of the elaborate system of technology codes used by the U.S. Patent Office to classify the technologies responsible for an invention's novelty. We find that the combinatorial inventive process exhibits an invariant rate of "exploitation" (refinements of existing combinations of technologies) and "exploration" (the development of new technological combinations). This combinatorial dynamic contrasts sharply with the creation of new technological capabilities -- the building blocks to be combined -- which has significantly slowed down. We also find that notwithstanding the very reduced rate at which new technologies are introduced, the generation of novel technological combinations engenders a practically infinite space of technological configurations.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          The Cambrian conundrum: early divergence and later ecological success in the early history of animals.

          Diverse bilaterian clades emerged apparently within a few million years during the early Cambrian, and various environmental, developmental, and ecological causes have been proposed to explain this abrupt appearance. A compilation of the patterns of fossil and molecular diversification, comparative developmental data, and information on ecological feeding strategies indicate that the major animal clades diverged many tens of millions of years before their first appearance in the fossil record, demonstrating a macroevolutionary lag between the establishment of their developmental toolkits during the Cryogenian [(850 to 635 million years ago (Ma)], and the later ecological success of metazoans during the Ediacaran (635 to 541 Ma) and Cambrian (541 to 488 Ma) periods. We argue that this diversification involved new forms of developmental regulation, as well as innovations in networks of ecological interaction within the context of permissive environmental circumstances.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chance and necessity: the evolution of morphological complexity and diversity.

            The primary foundation for contemplating the possible forms of life elsewhere in the Universe is the evolutionary trends that have marked life on Earth. For its first three billion years, life on Earth was a world of microscopic forms, rarely achieving a size greater than a millimetre or a complexity beyond two or three cell types. But in the past 600 million years, the evolution of much larger and more complex organisms has transformed the biosphere. Despite their disparate forms and physiologies, the evolution and diversification of plants, animals, fungi and other macroforms has followed similar global trends. One of the most important features underlying evolutionary increases in animal and plant size, complexity and diversity has been their modular construction from reiterated parts. Although simple filamentous and spherical forms may evolve wherever cellular life exists, the evolution of motile, modular mega-organisms might not be a universal pattern.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Exploration-Exploitation Dilemma: A Multidisciplinary Framework

              The trade-off between the need to obtain new knowledge and the need to use that knowledge to improve performance is one of the most basic trade-offs in nature, and optimal performance usually requires some balance between exploratory and exploitative behaviors. Researchers in many disciplines have been searching for the optimal solution to this dilemma. Here we present a novel model in which the exploration strategy itself is dynamic and varies with time in order to optimize a definite goal, such as the acquisition of energy, money, or prestige. Our model produced four very distinct phases: Knowledge establishment, Knowledge accumulation, Knowledge maintenance, and Knowledge exploitation, giving rise to a multidisciplinary framework that applies equally to humans, animals, and organizations. The framework can be used to explain a multitude of phenomena in various disciplines, such as the movement of animals in novel landscapes, the most efficient resource allocation for a start-up company, or the effects of old age on knowledge acquisition in humans.
                Bookmark

                Author and article information

                Journal
                1406.2938

                Social & Information networks,General physics
                Social & Information networks, General physics

                Comments

                Comment on this article