36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting the Myofibroblastic Cancer-Associated Fibroblast Phenotype Through Inhibition of NOX4

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cancer-associated fibroblasts (CAFs) are tumor-promoting and correlate with poor survival in many cancers, which has led to their emergence as potential therapeutic targets. However, effective methods to manipulate these cells clinically have yet to be developed.

          Methods

          CAF accumulation and prognostic significance in head and neck cancer (oral, n = 260; oropharyngeal, n = 271), and colorectal cancer (n = 56) was analyzed using immunohistochemistry. Mechanisms regulating fibroblast-to-myofibroblast transdifferentiation were investigated in vitro using RNA interference/pharmacological inhibitors followed by polymerase chain reaction (PCR), immunoblotting, immunofluorescence, and functional assays. RNA sequencing/bioinformatics and immunohistochemistry were used to analyze NAD(P)H Oxidase-4 (NOX4) expression in different human tumors. NOX4’s role in CAF-mediated tumor progression was assessed in vitro, using CAFs from multiple tissues in Transwell and organotypic culture assays, and in vivo, using xenograft (n = 9–15 per group) and isograft (n = 6 per group) tumor models. All statistical tests were two-sided.

          Results

          Patients with moderate/high levels of myofibroblastic-CAF had a statistically significant decrease in cancer-specific survival rates in each cancer type analyzed (hazard ratios [HRs] = 1.69–7.25, 95% confidence intervals [CIs] = 1.11 to 31.30, log-rank P ≤ .01). Fibroblast-to-myofibroblast transdifferentiation was dependent on a delayed phase of intracellular reactive oxygen species, generated by NOX4, across different anatomical sites and differentiation stimuli. A statistically significant upregulation of NOX4 expression was found in multiple human cancers ( P < .001), strongly correlating with myofibroblastic-CAFs ( r = 0.65–0.91, adjusted P < .001). Genetic/pharmacological inhibition of NOX4 was found to revert the myofibroblastic-CAF phenotype ex vivo (54.3% decrease in α-smooth muscle actin [α-SMA], 95% CI = 10.6% to 80.9%, P = .009), prevent myofibroblastic-CAF accumulation in vivo (53.2%–79.0% decrease in α-SMA across different models, P ≤ .02) and slow tumor growth (30.6%–64.0% decrease across different models, P ≤ .04).

          Conclusions

          These data suggest that pharmacological inhibition of NOX4 may have broad applicability for stromal targeting across cancer types.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha.

          The stromal microenvironment of tumors, which is a mixture of hematopoietic and mesenchymal cells, suppresses immune control of tumor growth. A stromal cell type that was first identified in human cancers expresses fibroblast activation protein-α (FAP). We created a transgenic mouse in which FAP-expressing cells can be ablated. Depletion of FAP-expressing cells, which made up only 2% of all tumor cells in established Lewis lung carcinomas, caused rapid hypoxic necrosis of both cancer and stromal cells in immunogenic tumors by a process involving interferon-γ and tumor necrosis factor-α. Depleting FAP-expressing cells in a subcutaneous model of pancreatic ductal adenocarcinoma also permitted immunological control of growth. Therefore, FAP-expressing cells are a nonredundant, immune-suppressive component of the tumor microenvironment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis.

            Idiopathic pulmonary fibrosis is a progressive lung disease with a high mortality rate. Because the signaling pathways activated by several tyrosine kinase receptors have been shown to be involved in lung fibrosis, it has been suggested that the inhibition of these receptors may slow the progression of idiopathic pulmonary fibrosis. In a 12-month, phase 2 trial, we assessed the efficacy and safety of four different oral doses of the tyrosine kinase inhibitor BIBF 1120 as compared with placebo in patients with idiopathic pulmonary fibrosis. The primary end point was the annual rate of decline in forced vital capacity (FVC). Secondary end points included acute exacerbations, quality of life (measured with the St. George's Respiratory Questionnaire [SGRQ]), and total lung capacity. A total of 432 patients underwent randomization to receive one of four doses of BIBF 1120 (50 mg once a day, 50 mg twice a day, 100 mg twice a day, or 150 mg twice a day) or placebo. In the group receiving 150 mg of BIBF 1120 twice a day, FVC declined by 0.06 liters per year, as compared with 0.19 liters per year in the placebo group, a 68.4% reduction in the rate of loss with BIBF 1120 (P = 0.06 with the closed testing procedure for multiplicity correction; P = 0.01 with the hierarchical testing procedure). This dose also resulted in a lower incidence of acute exacerbations, as compared with placebo (2.4 vs. 15.7 per 100 patient-years, P = 0.02) and a small decrease in the SGRQ score (assessed on a scale of 0 to 100, with lower scores indicating better quality of life) as compared with an increase with placebo (-0.66 vs. 5.46, P = 0.007). Gastrointestinal symptoms (which led to more discontinuations in the group receiving 150 mg twice a day than in the placebo group) and increases in levels of liver aminotransferases were more frequent in the group receiving 150 mg of BIBF 1120 twice daily than in the placebo group. In patients with idiopathic pulmonary fibrosis, BIBF 1120 at a dose of 150 mg twice daily, as compared with placebo, was associated with a trend toward a reduction in the decline in lung function, with fewer acute exacerbations and preserved quality of life. (Funded by Boehringer Ingelheim; ClinicalTrials.gov number, NCT00514683 .).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NADPH Oxidase-4 Mediates Myofibroblast Activation and Fibrogenic Responses to Lung Injury

              The NADPH oxidase (NOX) family of enzymes, which catalyze the reduction of O2 to form reactive oxygen species (ROS), have increased in number during eukaryotic evolution1,2. Seven isoforms of the NOX gene family have been identified in mammals; however, specific roles of NOX enzymes in mammalian physiology and pathophysiology have not been fully elucidated3,4. The best established physiological role of NOX enzymes is in host defense against pathogen invasion in diverse species, including plants5,6. The prototypical member of this family, NOX2 (gp91 phox ), is expressed in phagocytic cells and mediates microbicidal activities7,8. Here, we report a role for the NOX4 isoform in tissue repair functions of myofibroblasts and fibrogenesis. Transforming growth factor-β1 (TGF-β1) induces NOX4 expression in lung mesenchymal cells by a SMAD3-dependent mechanism. NOX4-dependent generation of hydrogen peroxide (H2O2) is required for TGF-β1-induced myofibroblast differentiation, extracellular matrix (ECM) production, and contractility. NOX4 is upregulated in lungs of mice subjected to non-infectious injury and in human idiopathic pulmonary fibrosis (IPF). Genetic or pharmacologic targeting of NOX4 abrogates fibrogenesis in two different murine models of lung injury. These studies support a novel function for NOX4 in tissue fibrogenesis and provide proof-of-concept for therapeutic targeting of NOX4 in recalcitrant fibrotic disorders.
                Bookmark

                Author and article information

                Journal
                J Natl Cancer Inst
                J. Natl. Cancer Inst
                jnci
                JNCI Journal of the National Cancer Institute
                Oxford University Press
                0027-8874
                1460-2105
                January 2018
                03 August 2017
                03 August 2017
                : 110
                : 1
                : 109-120
                Affiliations
                [1 ]Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton, UK
                [2 ]Genkyotex SA, Plan-les-Ouates, Switzerland
                [3 ]La Jolla Institute for Allergy and Immunology, La Jolla, CA
                Author notes

                Authors contributed equally to this work.

                Correspondence to: Gareth J. Thomas, PhD, FRCPath, University of Southampton, Faculty of Medicine, Cancer Sciences Unit, Somers Building, MP 824, Tremona Road, Southampton, SO16 6YD, UK (e-mail: g.thomas@ 123456soton.ac.uk ).
                Article
                djx121
                10.1093/jnci/djx121
                5903651
                28922779
                ccba9a8e-9b9e-4aa7-8ac3-f2277b6c3383
                © The Author 2017. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 October 2016
                : 8 March 2017
                : 18 May 2017
                Page count
                Pages: 12
                Funding
                Funded by: Cancer Research UK 10.13039/501100000289
                Award ID: C21825/A13315
                Award ID: C115121/A20256
                Funded by: National Cancer Institute 10.13039/100000054
                Award ID: C21825/A13315
                Award ID: C115121/A20256
                Categories
                Articles

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article