45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Luteolin suppresses inflammation-associated gene expression by blocking NF-κB and AP-1 activation pathway in mouse alveolar macrophages

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Luteolin, a plant flavonoid, has potent anti-inflammatory properties both in vitro and in vivo. However, the molecular mechanism of luteolin-mediated immune modulation has not been fully understood. In this study, we examined the effects of luteolin on the production of nitric oxide (NO) and prostaglandin E 2 (PGE 2), as well as the expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) in mouse alveolar macrophage MH-S and peripheral macrophage RAW 264.7 cells. Luteolin dose-dependently inhibited the expression and production of these inflammatory genes and mediators in macrophages stimulated with lipopolysaccharide (LPS). Semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR) assay further confirmed the suppression of LPS-induced TNF- α, IL-6, iNOS and COX-2 gene expression by luteolin at a transcriptional level. Luteolin also reduced the DNA binding activity of nuclear factor-kappa B (NF-κB) in LPS-activated macrophages. Moreover, luteolin blocked the degradation of IκB-α and nuclear translocation of NF-κB p65 subunit. In addition, luteolin significantly inhibited the LPS-induced DNA binding activity of activating protein-1 (AP-1). We also found that luteolin attenuated the LPS-mediated protein kinase B (Akt) and IKK phosphorylation, as well as reactive oxygen species (ROS) production. In sum, these data suggest that, by blocking NF-κB and AP-1 activation, luteolin acts to suppress the LPS-elicited inflammatory events in mouse alveolar macrophages, and this effect was mediated, at least in part, by inhibiting the generation of reactive oxygen species. Our observations suggest a possible therapeutic application of this agent for treating inflammatory disorders in lung.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          NF-kappaB activation by reactive oxygen species: fifteen years later.

          The transcription factor NF-kappaB plays a major role in coordinating innate and adaptative immunity, cellular proliferation, apoptosis and development. Since the discovery in 1991 that NF-kappaB may be activated by H(2)O(2), several laboratories have put a considerable effort into dissecting the molecular mechanisms underlying this activation. Whereas early studies revealed an atypical mechanism of activation, leading to IkappaBalpha Y42 phosphorylation independently of IkappaB kinase (IKK), recent findings suggest that H(2)O(2) activates NF-kappaB mainly through the classical IKK-dependent pathway. The molecular mechanisms leading to IKK activation are, however, cell-type specific and will be presented here. In this review, we also describe the effect of other ROS (HOCl and (1)O(2)) and reactive nitrogen species on NF-kappaB activation. Finally, we critically review the recent data highlighting the role of ROS in NF-kappaB activation by proinflammatory cytokines (TNF-alpha and IL-1beta) and lipopolysaccharide (LPS), two major components of innate immunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            iNOS-mediated nitric oxide production and its regulation.

            This review focuses on the production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and its regulation under physiological and pathophysiological conditions. NO is an important biological mediator in the living organism that is synthesized from L-arginine using NADPH and molecular oxygen. However, the overproduction of NO which is catalyzed by iNOS, a soluble enzyme and active in its dimeric form, is cytotoxic. Immunostimulating cytokines or bacterial pathogens activate iNOS and generate high concentrations of NO through the activation of inducible nuclear factors, including NFkB. iNOS activation is regulated mainly at the transcriptional level, but also at posttranscriptional, translational and postranslational levels through effects on protein stability, dimerization, phosphorylation, cofactor binding and availability of oxygen and L-arginine as substrates. The prevention of the overproduction of NO in the living organism through control of regulatory pathways may assist in the treatment of high NO-mediated disorders without changing physiological levels of NO. Copyright 2004 Elsevier Inc.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Secretory products of macrophages.

              C F Nathan (1987)
                Bookmark

                Author and article information

                Contributors
                Journal
                Life Sci
                Life Sci
                Life Sciences
                Elsevier
                0024-3205
                1879-0631
                5 October 2007
                30 November 2007
                5 October 2007
                : 81
                : 23
                : 1602-1614
                Affiliations
                [a ]Graduate Institute of Chinese Pharmaceutical Sciences, China Medical University, Taichung 404, Taiwan, ROC
                [b ]Department of Internal Medicine, China Medical University Hospital at Beigang, Yunlin 651, Taiwan, ROC
                [c ]Department of Education & Research, Taichung Veterans General Hospital, Taichung 407, Taiwan, ROC
                Author notes
                [* ]Corresponding author. Department of Education & Research, Taichung Veterans General Hospital, Taichung 407, Taiwan, ROC. Tel.: +886 4 23592525x4037; fax: +886 4 23592705. h2326@ 123456mail.vghtc.gov.tw
                Article
                S0024-3205(07)00723-0
                10.1016/j.lfs.2007.09.028
                7094354
                17977562
                cda4a479-6641-41e0-ac80-a4be35f1b1f7
                Copyright © 2007 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 23 March 2007
                : 26 September 2007
                Categories
                Article

                luteolin,lps,nf-κb,ap-1,alveolar macrophage,anti-inflammation
                luteolin, lps, nf-κb, ap-1, alveolar macrophage, anti-inflammation

                Comments

                Comment on this article