10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D.

      Journal of the American Society of Nephrology : JASN
      Animals, Calcitriol, administration & dosage, Cells, Cultured, Dose-Response Relationship, Drug, Fibroblast Growth Factors, blood, metabolism, Gene Expression Regulation, drug effects, physiology, Hemostasis, Hypophosphatemia, Mice, Mice, Inbred C57BL, Mice, Knockout, Osteoblasts, Phosphates

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The regulation of the phosphaturic factor fibroblast growth factor 23 (FGF23) is not well understood. It was found that administration of 1,25-dihydroxyvitamin D(3) (1,25[OH](2)D(3)) to mice rapidly increased serum FGF23 concentrations from a basal level of 90.6 +/- 8.1 to 213.8 +/- 14.6 pg/ml at 8 h (mean +/- SEM; P < 0.01) and resulted in a four-fold increase in FGF23 transcripts in bone, the predominate site of FGF23 expression. In the Hyp-mouse homologue of X-linked hypophosphatemic rickets, administration of 1,25(OH)(2)D(3) further increased circulating FGF23 levels. In Gcm2 null mice, low 1,25(OH)(2)D(3) levels were associated with a three-fold reduction in FGF23 levels that were increased by administration of 1,25(OH)(2)D(3). In osteoblast cell cultures, 1,25(OH)(2)D(3) but not calcium, phosphate, or parathyroid hormone stimulated FGF23 mRNA levels and resulted in a dose-dependent increase in FGF23 promoter activity. Overexpression of a dominant negative vitamin D receptor inhibited 1,25(OH)(2)D(3) stimulation of FGF23 promoter activity, and mutagenesis of the FGF23 promoter identified a vitamin D-responsive element (-1180 GGAACTcagTAACCT -1156) that is responsible for the vitamin D effects. These data suggest that 1,25(OH)(2)D(3) is an important regulator of FGF23 production by osteoblasts in bone. The physiologic role of FGF23 may be to act as a counterregulatory phosphaturic hormone to maintain phosphate homeostasis in response to vitamin D.

          Related collections

          Author and article information

          Comments

          Comment on this article