10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      KRDS: a web server for evaluating drug resistance mutations in kinases by molecular docking

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kinases are major targets of anti-cancer therapies owing to their importance in signaling processes that regulate cell growth and proliferation. However, drug resistance has emerged as a major obstacle to cancer therapy. Resistance to drugs has various underlying mechanisms, including the acquisition of mutations at drug binding sites and the resulting reduction in drug binding affinity. Therefore, the identification of mutations that are relevant to drug resistance may be useful to overcome this issue. We hypothesized that these mutations can be identified by combining recent advances in computational methods for protein structure modeling and ligand docking simulation. Hence, we developed a web-based tool named the Kinase Resistance Docking System (KRDS) that enables the assessment of the effects of mutations on kinase-ligand interactions. KRDS receives a list of mutations in kinases, generates structural models of the mutants, performs docking simulations, and reports the results to users. The changes in docking scores and docking conformations can be analyzed to infer the effects of mutations on drug binding and drug resistance. We expect our tool to improve our understanding of drug binding mechanisms and facilitate the development of effective new drugs to overcome resistance related to kinases; it may be particularly useful for biomedical researchers who are not familiar with computational environments. Our tool is available at http://bcbl.kaist.ac.kr/KRDS/.

          Electronic supplementary material

          The online version of this article (10.1186/s13321-018-0274-y) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The protein kinase complement of the human genome.

          G. Manning (2002)
          We have catalogued the protein kinase complement of the human genome (the "kinome") using public and proprietary genomic, complementary DNA, and expressed sequence tag (EST) sequences. This provides a starting point for comprehensive analysis of protein phosphorylation in normal and disease states, as well as a detailed view of the current state of human genome analysis through a focus on one large gene family. We identify 518 putative protein kinase genes, of which 71 have not previously been reported or described as kinases, and we extend or correct the protein sequences of 56 more kinases. New genes include members of well-studied families as well as previously unidentified families, some of which are conserved in model organisms. Classification and comparison with model organism kinomes identified orthologous groups and highlighted expansions specific to human and other lineages. We also identified 106 protein kinase pseudogenes. Chromosomal mapping revealed several small clusters of kinase genes and revealed that 244 kinases map to disease loci or cancer amplicons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The comprehensive antibiotic resistance database.

            The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Improved protein-ligand docking using GOLD.

              The Chemscore function was implemented as a scoring function for the protein-ligand docking program GOLD, and its performance compared to the original Goldscore function and two consensus docking protocols, "Goldscore-CS" and "Chemscore-GS," in terms of docking accuracy, prediction of binding affinities, and speed. In the "Goldscore-CS" protocol, dockings produced with the Goldscore function are scored and ranked with the Chemscore function; in the "Chemscore-GS" protocol, dockings produced with the Chemscore function are scored and ranked with the Goldscore function. Comparisons were made for a "clean" set of 224 protein-ligand complexes, and for two subsets of this set, one for which the ligands are "drug-like," the other for which they are "fragment-like." For "drug-like" and "fragment-like" ligands, the docking accuracies obtained with Chemscore and Goldscore functions are similar. For larger ligands, Goldscore gives superior results. Docking with the Chemscore function is up to three times faster than docking with the Goldscore function. Both combined docking protocols give significant improvements in docking accuracy over the use of the Goldscore or Chemscore function alone. "Goldscore-CS" gives success rates of up to 81% (top-ranked GOLD solution within 2.0 A of the experimental binding mode) for the "clean list," but at the cost of long search times. For most virtual screening applications, "Chemscore-GS" seems optimal; search settings that give docking speeds of around 0.25-1.3 min/compound have success rates of about 78% for "drug-like" compounds and 85% for "fragment-like" compounds. In terms of producing binding energy estimates, the Goldscore function appears to perform better than the Chemscore function and the two consensus protocols, particularly for faster search settings. Even at docking speeds of around 1-2 min/compound, the Goldscore function predicts binding energies with a standard deviation of approximately 10.5 kJ/mol. Copyright 2003 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Contributors
                melugina@kaist.ac.kr
                hsp@kfri.re.kr
                kds@kaist.ac.kr
                Journal
                J Cheminform
                J Cheminform
                Journal of Cheminformatics
                Springer International Publishing (Cham )
                1758-2946
                10 April 2018
                10 April 2018
                2018
                : 10
                : 20
                Affiliations
                [1 ]ISNI 0000 0001 2292 0500, GRID grid.37172.30, Department of Bio and Brain Engineering, , KAIST, ; Daejeon, 34141 Republic of Korea
                [2 ]ISNI 0000 0001 0573 0246, GRID grid.418974.7, Division of Nutrition and Metabolism Research, , Korea Food Research Institute, ; Wanju-gun, Jeollabuk-do Republic of Korea
                Article
                274
                10.1186/s13321-018-0274-y
                5891443
                29633047
                d07b3335-57d9-41f7-819b-e34a292df1d7
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 April 2017
                : 2 April 2018
                Funding
                Funded by: Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea
                Award ID: HI12C0014
                Award Recipient :
                Funded by: Bio-Synergy Research Project
                Award ID: NRF-2017M3A9C4065952
                Award Recipient :
                Categories
                Software
                Custom metadata
                © The Author(s) 2018

                Chemoinformatics
                drug resistance,kinase,docking,ensemble,point mutation
                Chemoinformatics
                drug resistance, kinase, docking, ensemble, point mutation

                Comments

                Comment on this article