2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      MicroRNA-targeted therapeutics for lung cancer treatment

      1 , 2 , 1 , 1 , 3 , 1 , 2 , 4
      Expert Opinion on Drug Discovery
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lung cancer is one of the leading causes of cancer-related mortality worldwide. MicroRNAs (miRNAs) are endogenous non-coding small RNAs that repress the expression of a broad array of target genes. Many efforts have been made to therapeutically target miRNAs in cancer treatments using miRNA mimics and miRNA antagonists. Areas covered: This article summarizes the recent findings with the role of miRNAs in lung cancer, and discusses the potential and challenges of developing miRNA-targeted therapeutics in this dreadful disease. Expert opinion: The development of miRNA-targeted therapeutics has become an important anti-cancer strategy. Results from both preclinical and clinical trials of microRNA replacement therapy have shown some promise in cancer treatment. However, some obstacles, including drug delivery, specificity, off-target effect, toxicity mediation, immunological activation and dosage determination should be addressed. Several delivery strategies have been employed, including naked oligonucleotides, liposomes, aptamer-conjugates, nanoparticles and viral vectors. However, delivery remains a main challenge in miRNA-targeting therapeutics. Furthermore, immune-related serious adverse events are also a concern, which indicates the complexity of miRNA-based therapy in clinical settings.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA silencing for cancer therapy targeted to the tumor microenvironment

          SUMMARY PARAGRAPH MicroRNAs (miRNAs) are short non-coding RNAs expressed in different tissue and cell types that suppress the expression of target genes. As such, miRNAs are critical cogs in numerous biological processes 1,2 , and dysregulated miRNA expression is correlated with many human diseases. Certain miRNAs, called oncomiRs, play a causal role in the onset and maintenance of cancer when overexpressed. Tumors that depend on these miRNAs are said to display oncomiR addiction 3–5 . Some of the most effective anticancer therapies target oncogenes like EGFR and HER2; similarly, inhibition of oncomiRs using antisense oligomers (i.e. antimiRs) is an evolving therapeutic strategy 6,7 . However, the in vivo efficacy of current antimiR technologies is hindered by physiological and cellular barriers to delivery into targeted cells 8 . Here we introduce a novel antimiR delivery platform that targets the acidic tumor microenvironment, evades systemic clearance by the liver, and facilitates cell entry via a non-endocytic pathway. We found that the attachment of peptide nucleic acid (PNA) antimiRs to a peptide with a low pH-induced transmembrane structure (pHLIP) produced a novel construct that could target the tumor microenvironment, transport antimiRs across plasma membranes under acidic conditions such as those found in solid tumors (pH ~6), and effectively inhibit the miR-155 oncomiR in a mouse model of lymphoma. This study introduces a new paradigm in the use of antimiRs as anti-cancer drugs, which can have broad impacts on the field of targeted drug delivery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            PDL1 Regulation by p53 via miR-34

            Background: Although clinical studies have shown promise for targeting PD1/PDL1 signaling in non–small cell lung cancer (NSCLC), the regulation of PDL1 expression is poorly understood. Here, we show that PDL1 is regulated by p53 via miR-34. Methods: p53 wild-type and p53-deficient cell lines (p53–/– and p53+/+ HCT116, p53-inducible H1299, and p53-knockdown H460) were used to determine if p53 regulates PDL1 via miR-34. PDL1 and miR-34a expression were analyzed in samples from patients with NSCLC and mutated p53 vs wild-type p53 tumors from The Cancer Genome Atlas for Lung Adenocarcinoma (TCGA LUAD). We confirmed that PDL1 is a direct target of miR-34 with western blotting and luciferase assays and used a p53R172HΔg/+K-rasLA1/+ syngeneic mouse model (n = 12) to deliver miR-34a–loaded liposomes (MRX34) plus radiotherapy (XRT) and assessed PDL1 expression and tumor-infiltrating lymphocytes (TILs). A two-sided t test was applied to compare the mean between different treatments. Results: We found that p53 regulates PDL1 via miR-34, which directly binds to the PDL1 3’ untranslated region in models of NSCLC (fold-change luciferase activity to control group, mean for miR-34a = 0.50, SD = 0.2, P < .001; mean for miR-34b = 0.52, SD = 0.2, P = .006; and mean for miR-34c = 0.59, SD = 0.14, and P = .006). Therapeutic delivery of MRX34, currently the subject of a phase I clinical trial, promoted TILs (mean of CD8 expression percentage of control group = 22.5%, SD = 1.9%; mean of CD8 expression percentage of MRX34 = 30.1%, SD = 3.7%, P = .016, n = 4) and reduced CD8+PD1+ cells in vivo (mean of CD8/PD1 expression percentage of control group = 40.2%, SD = 6.2%; mean of CD8/PD1 expression percentage of MRX34 = 20.3%, SD = 5.1%, P = .001, n = 4). Further, MRX34 plus XRT increased CD8+ cell numbers more than either therapy alone (mean of CD8 expression percentage of MRX34 plus XRT to control group = 44.2%, SD = 8.7%, P = .004, n = 4). Finally, miR-34a delivery reduced the numbers of radiation-induced macrophages (mean of F4-80 expression percentage of control group = 52.4%, SD = 1.7%; mean of F4-80 expression percentage of MRX34 = 40.1%, SD = 3.5%, P = .008, n = 4) and T-regulatory cells. Conclusions: We identified a novel mechanism by which tumor immune evasion is regulated by p53/miR-34/PDL1 axis. Our results suggest that delivery of miRNAs with standard therapies, such as XRT, may represent a novel therapeutic approach for lung cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RNA interference in the clinic: challenges and future directions.

              Inherent difficulties with blocking many desirable targets using conventional approaches have prompted many to consider using RNA interference (RNAi) as a therapeutic approach. Although exploitation of RNAi has immense potential as a cancer therapeutic, many physiological obstacles stand in the way of successful and efficient delivery. This Review explores current challenges to the development of synthetic RNAi-based therapies and considers new approaches to circumvent biological barriers, to avoid intolerable side effects and to achieve controlled and sustained release.
                Bookmark

                Author and article information

                Journal
                Expert Opinion on Drug Discovery
                Expert Opinion on Drug Discovery
                Informa UK Limited
                1746-0441
                1746-045X
                December 08 2016
                February 2017
                November 28 2016
                February 2017
                : 12
                : 2
                : 141-157
                Affiliations
                [1 ]Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
                [2 ]College of Life Science, Ningxia University, Yinchuan, China
                [3 ]Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
                [4 ]Human Stem Cell Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
                Article
                10.1080/17460441.2017.1263298
                27866431
                d2c20702-c4cf-48bf-a13c-67793fa62b2b
                © 2017
                History

                Comments

                Comment on this article