34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Germ cells divide and differentiate in a unique local microenvironment under the control of somatic cells. Signals released in this niche instruct oocyte reentry into the meiotic cell cycle. Once initiated, the progression through meiosis and the associated program of maternal mRNA translation are thought to be cell-autonomous. Here we show that translation of a subset of maternal mRNAs critical for embryo development is under the control of somatic cell inputs. Translation of specific maternal transcripts increases in oocytes cultured in association with somatic cells and is sensitive to EGF-like growth factors that act only on the somatic compartment. In mice deficient in amphiregulin, decreased fecundity and oocyte developmental competence is associated with defective translation of a subset of maternal mRNAs. These somatic cell signals that affect translation require activation of the PI3K/AKT/mTOR pathway. Thus, mRNA translation depends on somatic cell cues that are essential to reprogram the oocyte for embryo development.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks.

          The ribosomal protein S6K (S6 kinase) represents an extensively studied effector of the TORC1 [TOR (target of rapamycin) complex 1], which possesses important yet incompletely defined roles in cellular and organismal physiology. TORC1 functions as an environmental sensor by integrating signals derived from diverse environmental cues to promote anabolic and inhibit catabolic cellular functions. mTORC1 (mammalian TORC1) phosphorylates and activates S6K1 and S6K2, whose first identified substrate was rpS6 (ribosomal protein S6), a component of the 40S ribosome. Studies over the past decade have uncovered a number of additional S6K1 substrates, revealing multiple levels at which the mTORC1-S6K1 axis regulates cell physiology. The results thus far indicate that the mTORC1-S6K1 axis controls fundamental cellular processes, including transcription, translation, protein and lipid synthesis, cell growth/size and cell metabolism. In the present review we summarize the regulation of S6Ks, their cellular substrates and functions, and their integration within rapidly expanding mTOR (mammalian TOR) signalling networks. Although our understanding of the role of mTORC1-S6K1 signalling in physiology remains in its infancy, evidence indicates that this signalling axis controls, at least in part, glucose homoeostasis, insulin sensitivity, adipocyte metabolism, body mass and energy balance, tissue and organ size, learning, memory and aging. As dysregulation of this signalling axis contributes to diverse disease states, improved understanding of S6K regulation and function within mTOR signalling networks may enable the development of novel therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EGF-like growth factors as mediators of LH action in the ovulatory follicle.

            Before ovulation in mammals, a cascade of events resembling an inflammatory and/or tissue remodeling process is triggered by luteinizing hormone (LH) in the ovarian follicle. Many LH effects, however, are thought to be indirect because of the restricted expression of its receptor. Here, we demonstrate that LH stimulation induces the transient and sequential expression of the epidermal growth factor (EGF) family members amphiregulin, epiregulin, and beta-cellulin. Incubation of follicles with these growth factors recapitulates the morphological and biochemical events triggered by LH, including cumulus expansion and oocyte maturation. Thus, these EGF-related growth factors are paracrine mediators that propagate the LH signal throughout the follicle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intercellular communication in the mammalian ovary: oocytes carry the conversation.

              The production of functional female gametes is essential for the propagation of all vertebrate species. The growth of oocytes within ovarian follicles and their development to mature eggs have fascinated biologists for centuries, and scientists have long realized the importance of the ovarian follicle's somatic cells in nurturing oogenesis and delivering the oocyte to the oviduct by ovulation. Recent studies have revealed key roles of the oocyte in folliculogenesis and established that bidirectional communication between the oocyte and companion somatic cells is essential for development of an egg competent to undergo fertilization and embryogenesis. The challenge for the future is to identify the factors that participate in this communication and their mechanisms of action.
                Bookmark

                Author and article information

                Journal
                100890575
                21417
                Nat Cell Biol
                Nat. Cell Biol.
                Nature cell biology
                1465-7392
                1476-4679
                6 June 2014
                24 November 2013
                December 2013
                23 June 2014
                : 15
                : 12
                : 1415-1423
                Affiliations
                [1 ]Center for Reproductive Sciences, San Francisco
                [2 ]Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco
                [3 ]Department of Obstetrics and Gynecology and Reproductive Sciences, San Francisco
                [4 ]Institute of Human Genetics University of California, San Francisco
                Author notes
                Corresponding Author: Marco Conti contim@ 123456obgyn.ucsf.edu
                Article
                NIHMS529580
                10.1038/ncb2873
                4066669
                24270888
                d3a91aa3-979d-4157-80e1-19be6d096b5c

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article