12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Environmental DNA for improved detection and environmental surveillance of schistosomiasis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Schistosomiasis is a water-based, infectious disease with high morbidity and significant economic burdens affecting >250 million people globally. Disease control has, with notable success, for decades focused on drug treatment of infected human populations, but a recent paradigm shift now entails moving from control to elimination. To achieve this ambitious goal, more sensitive diagnostic tools are needed to monitor progress toward transmission interruption in the environment, especially in low-intensity infection areas. We report on the development of an environmental DNA (eDNA)-based tool to efficiently detect DNA traces of the parasite Schistosoma mansoni directly in the aquatic environment, where the nonhuman part of the parasite life cycle occurs. This is a report of the successful detection of S. mansoni in freshwater samples by using aquatic eDNA. True eDNA was detected in as few as 10 cercariae per liter of water in laboratory experiments. The field applicability of the method was tested at known transmission sites in Kenya, where comparison of schistosome detection by conventional snail surveys (snail collection and cercariae shedding) with eDNA (water samples) showed 71% agreement between the methods. The eDNA method furthermore detected schistosome presence at two additional sites where snail shedding failed, demonstrating a higher sensitivity of eDNA sampling. We conclude that eDNA provides a promising tool to substantially improve the environmental surveillance of S. mansoni. Given the proper method and guideline development, eDNA could become an essential future component of the schistosomiasis control tool box needed to achieve the goal of elimination.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk.

          An estimated 779 million people are at risk of schistosomiasis, of whom 106 million (13.6%) live in irrigation schemes or in close proximity to large dam reservoirs. We identified 58 studies that examined the relation between water resources development projects and schistosomiasis, primarily in African settings. We present a systematic literature review and meta-analysis with the following objectives: (1) to update at-risk populations of schistosomiasis and number of people infected in endemic countries, and (2) to quantify the risk of water resources development and management on schistosomiasis. Using 35 datasets from 24 African studies, our meta-analysis showed pooled random risk ratios of 2.4 and 2.6 for urinary and intestinal schistosomiasis, respectively, among people living adjacent to dam reservoirs. The risk ratio estimate for studies evaluating the effect of irrigation on urinary schistosomiasis was in the range 0.02-7.3 (summary estimate 1.1) and that on intestinal schistosomiasis in the range 0.49-23.0 (summary estimate 4.7). Geographic stratification showed important spatial differences, idiosyncratic to the type of water resources development. We conclude that the development and management of water resources is an important risk factor for schistosomiasis, and hence strategies to mitigate negative effects should become integral parts in the planning, implementation, and operation of future water projects.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Environmental DNA metabarcoding: Transforming how we survey animal and plant communities

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Environmental DNA for wildlife biology and biodiversity monitoring.

              Extraction and identification of DNA from an environmental sample has proven noteworthy recently in detecting and monitoring not only common species, but also those that are endangered, invasive, or elusive. Particular attributes of so-called environmental DNA (eDNA) analysis render it a potent tool for elucidating mechanistic insights in ecological and evolutionary processes. Foremost among these is an improved ability to explore ecosystem-level processes, the generation of quantitative indices for analyses of species, community diversity, and dynamics, and novel opportunities through the use of time-serial samples and unprecedented sensitivity for detecting rare or difficult-to-sample taxa. Although technical challenges remain, here we examine the current frontiers of eDNA, outline key aspects requiring improvement, and suggest future developments and innovations for research. Copyright © 2014 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                April 30 2019
                April 30 2019
                April 30 2019
                April 11 2019
                : 116
                : 18
                : 8931-8940
                Article
                10.1073/pnas.1815046116
                6500138
                30975758
                d3bf9abc-039a-4b8d-a187-b8e820ca2f8b
                © 2019

                Free to read

                https://www.pnas.org/site/aboutpnas/licenses.xhtml

                History

                Comments

                Comment on this article