14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interactions between Neutrophils, Th17 Cells, and Chemokines during the Initiation of Experimental Model of Multiple Sclerosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS) in which activated T cell and neutrophil interactions lead to neuroinflammation. In this study the expression of CCR6, CXCR2, and CXCR6 in Th17 cells and neutrophils migrating to the brain during EAE was measured, alongside an evaluation of the production of IL-17, IL-23, CCL-20, and CXCL16 in the brain. Next, inflammatory cell subpopulations accumulating in the brain after intracerebral injections of IL-17 or CXCL1, as well as during modulation of EAE with anti-IL-23R or anti-CXCR2 antibodies, were analyzed. Th17 cells upregulate CXCR2 during the preclinical phase of EAE and a significant migration of these cells to the brain was observed. Neutrophils upregulated CCR6, CXCR2, and CXCR6 during EAE, accumulating in the brain both prior to and during acute EAE attacks. Production of IL-17, IL-23, CCL20, and CXCL16 in the CNS was increased during both preclinical and acute EAE. Intracerebral delivery of CXCL1 stimulated the early accumulation of neutrophils in normal and preclinical EAE brains but reduced the migration of Th17 cells to the brain during the preclinical stage of EAE. Modulation of EAE by anti-IL-23R antibodies ameliorated EAE by decreasing the intracerebral accumulation of Th17 cells.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17.

          Interleukin 17 (IL-17) has been linked to autoimmune diseases, although its regulation and function have remained unclear. Here we have evaluated in vitro and in vivo the requirements for the differentiation of naive CD4 T cells into effector T helper cells that produce IL-17. This process required the costimulatory molecules CD28 and ICOS but was independent of the cytokines and transcription factors required for T helper type 1 or type 2 differentiation. Furthermore, both IL-4 and interferon-gamma negatively regulated T helper cell production of IL-17 in the effector phase. In vivo, antibody to IL-17 inhibited chemokine expression in the brain during experimental autoimmune encephalomyelitis, whereas overexpression of IL-17 in lung epithelium caused chemokine production and leukocyte infiltration. Thus, IL-17 expression characterizes a unique T helper lineage that regulates tissue inflammation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain.

            Interleukin-12 (IL-12) is a heterodimeric molecule composed of p35 and p40 subunits. Analyses in vitro have defined IL-12 as an important factor for the differentiation of naive T cells into T-helper type 1 CD4+ lymphocytes secreting interferon-gamma (refs 1, 2). Similarly, numerous studies have concluded that IL-12 is essential for T-cell-dependent immune and inflammatory responses in vivo, primarily through the use of IL-12 p40 gene-targeted mice and neutralizing antibodies against p40. The cytokine IL-23, which comprises the p40 subunit of IL-12 but a different p19 subunit, is produced predominantly by macrophages and dendritic cells, and shows activity on memory T cells. Evidence from studies of IL-23 receptor expression and IL-23 overexpression in transgenic mice suggest, however, that IL-23 may also affect macrophage function directly. Here we show, by using gene-targeted mice lacking only IL-23 and cytokine replacement studies, that the perceived central role for IL-12 in autoimmune inflammation, specifically in the brain, has been misinterpreted and that IL-23, and not IL-12, is the critical factor in this response. In addition, we show that IL-23, unlike IL-12, acts more broadly as an end-stage effector cytokine through direct actions on macrophages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development, cytokine profile and function of human interleukin 17-producing helper T cells.

              T(H)-17 cells are a distinct lineage of proinflammatory T helper cells that are essential for autoimmune disease. In mice, commitment to the T(H)-17 lineage is dependent on transforming growth factor-beta and interleukin 6 (IL-6). Here we demonstrate that IL-23 and IL-1beta induced the development of human T(H)-17 cells expressing IL-17A, IL-17F, IL-22, IL-26, interferon-gamma, the chemokine CCL20 and transcription factor RORgammat. In situ, T(H)-17 cells were identified by expression of the IL-23 receptor and the memory T cell marker CD45RO. Psoriatic skin lesions contained IL-23-producing dendritic cells and were enriched in the cytokines produced by human T(H)-17 cells that promote the production of antimicrobial peptides in human keratinocytes. Our data collectively indicate that human and mouse T(H)-17 cells require distinct factors during differentiation and that human T(H)-17 cells may regulate innate immunity in epithelial cells.
                Bookmark

                Author and article information

                Journal
                Mediators Inflamm
                Mediators Inflamm
                MI
                Mediators of Inflammation
                Hindawi Publishing Corporation
                0962-9351
                1466-1861
                2014
                19 February 2014
                : 2014
                : 590409
                Affiliations
                1Department of Neurology, Epileptology and Stroke, Medical University of Lodz, Ulice Zeromskiego 113, 90 549 Lodz, Poland
                2Department of Propedeutics of Neurology, Medical University of Lodz, Ulice Zeromskiego 113, 90 549 Lodz, Poland
                Author notes
                *Andrzej Glabinski: aglabinski@ 123456gmail.com

                Academic Editor: Mohammad Athar

                Author information
                http://orcid.org/0000-0002-1305-1494
                Article
                10.1155/2014/590409
                3945772
                24692851
                d56ef3e0-f460-49fb-9a4e-71e93a2087c5
                Copyright © 2014 Dagmara Weronika Wojkowska et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 September 2013
                : 7 January 2014
                : 12 January 2014
                Categories
                Research Article

                Immunology
                Immunology

                Comments

                Comment on this article