144
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms

      1
      Annual Review of Plant Physiology and Plant Molecular Biology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many plants increase in freezing tolerance upon exposure to low nonfreezing temperatures, a phenomenon known as cold acclimation. In this review, recent advances in determining the nature and function of genes with roles in freezing tolerance and the mechanisms involved in low temperature gene regulation and signal transduction are described. One of the important conclusions to emerge from these studies is that cold acclimation includes the expression of certain cold-induced genes that function to stabilize membranes against freeze-induced injury. In addition, a family of Arabidopsis transcription factors, the CBF/DREB1 proteins, have been identified that control the expression of a regulon of cold-induced genes that increase plant freezing tolerance. These results along with many of the others summarized here further our understanding of the basic mechanisms that plants have evolved to survive freezing temperatures. In addition, the findings have potential practical applications as freezing temperatures are a major factor limiting the geographical locations suitable for growing crop and horticultural plants and periodically account for significant losses in plant productivity.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis.

          Plant growth is greatly affected by drought and low temperature. Expression of a number of genes is induced by both drought and low temperature, although these stresses are quite different. Previous experiments have established that a cis-acting element named DRE (for dehydration-responsive element) plays an important role in both dehydration- and low-temperature-induced gene expression in Arabidopsis. Two cDNA clones that encode DRE binding proteins, DREB1A and DREB2A, were isolated by using the yeast one-hybrid screening technique. The two cDNA libraries were prepared from dehydrated and cold-treated rosette plants, respectively. The deduced amino acid sequences of DREB1A and DREB2A showed no significant sequence similarity, except in the conserved DNA binding domains found in the EREBP and APETALA2 proteins that function in ethylene-responsive expression and floral morphogenesis, respectively. Both the DREB1A and DREB2A proteins specifically bound to the DRE sequence in vitro and activated the transcription of the b-glucuronidase reporter gene driven by the DRE sequence in Arabidopsis leaf protoplasts. Expression of the DREB1A gene and its two homologs was induced by low-temperature stress, whereas expression of the DREB2A gene and its single homolog was induced by dehydration. Overexpression of the DREB1A cDNA in transgenic Arabidopsis plants not only induced strong expression of the target genes under unstressed conditions but also caused dwarfed phenotypes in the transgenic plants. These transgenic plants also revealed freezing and dehydration tolerance. In contrast, overexpression of the DREB2A cDNA induced weak expression of the target genes under unstressed conditions and caused growth retardation of the transgenic plants. These results indicate that two independent families of DREB proteins, DREB1 and DREB2, function as trans-acting factors in two separate signal transduction pathways under low-temperature and dehydration conditions, respectively.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            THE MOLECULAR BASIS OF DEHYDRATION TOLERANCE IN PLANTS.

            Molecular studies of drought stress in plants use a variety of strategies and include different species subjected to a wide range of water deficits. Initial research has by necessity been largely descriptive, and relevant genes have been identified either by reference to physiological evidence or by differential screening. A large number of genes with a potential role in drought tolerance have been described, and major themes in the molecular response have been established. Particular areas of importance are sugar metabolism and late-embryogenesis-abundant (LEA) proteins. Studies have begun to examine mechanisms that control the gene expression, and putative regulatory pathways have been established. Recent attempts to understand gene function have utilized transgenic plants. These efforts are of clear agronomic importance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression.

              Cold-induced expression of the Arabidopsis COR (cold-regulated) genes is mediated by a DNA regulatory element termed the CRT (C-repeat)/DRE (dehydration-responsive element). Recently, we identified a transcriptional activator, CBF1, that binds to the CRT/DRE and demonstrated that its overexpression in transgenic Arabidopsis plants at non-acclimating temperatures induces COR gene expression and increases plant freezing tolerance. Here we report that CBF1 belongs to a small family of closely related proteins which includes CBF2 and CBF3. DNA sequencing of an 8.7 kb region of the Arabidopsis genome along with genetic mapping experiments indicated that the three CBF genes are organized in direct repeat on chromosome 4 at 72.8 cM, closely linked to molecular markers PG11 and m600. Like CBF1, both CBF2 and CBF3 activated expression of reporter genes in yeast that contained the CRT/DRE as an upstream activator sequence. The transcript levels for all three CBF genes increased within 15 min of transferring plants to low temperature, followed by accumulation of COR gene transcripts at about 2 h. CBF transcripts also accumulated rapidly in response to mechanical agitation. The promoter regions of the CBF genes do not contain the CRT sequence, CCGAC, and overexpression of CBF1 did not have a detectable effect on CBF3 transcript levels, suggesting that the CBF gene family is not subject to autoregulation. We propose that cold-induced expression of CRT/DRE-containing COR genes involves a low temperature-stimulated signalling cascade in which CBF gene induction is an early event.
                Bookmark

                Author and article information

                Journal
                Annual Review of Plant Physiology and Plant Molecular Biology
                Annu. Rev. Plant. Physiol. Plant. Mol. Biol.
                Annual Reviews
                1040-2519
                June 1999
                June 1999
                : 50
                : 1
                : 571-599
                Affiliations
                [1 ]Department of Crop and Soil Sciences, Department of Microbiology, Michigan State University, East Lansing, Michigan 48824; e-mail:
                Article
                10.1146/annurev.arplant.50.1.571
                15012220
                d6186480-f883-4953-9fc8-62a7b6beccfb
                © 1999
                History

                Comments

                Comment on this article