14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intraspecific Variation within the Utricularia amethystina Species Morphotypes Based on Chloroplast Genomes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Utricularia amethystina Salzm. ex A.St.-Hil. & Girard (Lentibulariacea e) is a highly polymorphic carnivorous plant taxonomically rearranged many times throughout history. Herein, the complete chloroplast genomes (cpDNA) of three U. amethystina morphotypes: purple-, white-, and yellow-flowered, were sequenced, compared, and putative markers for systematic, populations, and evolutionary studies were uncovered. In addition, RNA-Seq and RNA-editing analysis were employed for functional cpDNA evaluation. The cpDNA of three U. amethystina morphotypes exhibits typical quadripartite structure. Fine-grained sequence comparison revealed a high degree of intraspecific genetic variability in all morphotypes, including an exclusive inversion in the psbM and petN genes in U. amethystina yellow. Phylogenetic analyses indicate that U. amethystina morphotypes are monophyletic. Furthermore, in contrast to the terrestrial Utricularia reniformis cpDNA, the U. amethystina morphotypes retain all the plastid NAD(P)H-dehydrogenase ( ndh) complex genes. This observation supports the hypothesis that the ndhs in terrestrial Utricularia were independently lost and regained, also suggesting that different habitats (aquatic and terrestrial) are not related to the absence of Utricularia ndhs gene repertoire as previously assumed. Moreover, RNA-Seq analyses recovered similar patterns, including nonsynonymous RNA-editing sites (e.g., rps14 and petB). Collectively, our results bring new insights into the chloroplast genome architecture and evolution of the photosynthesis machinery in the Lentibulariaceae.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach

          We present an in silico approach for the reconstruction of complete mitochondrial genomes of non-model organisms directly from next-generation sequencing (NGS) data—mitochondrial baiting and iterative mapping (MITObim). The method is straightforward even if only (i) distantly related mitochondrial genomes or (ii) mitochondrial barcode sequences are available as starting-reference sequences or seeds, respectively. We demonstrate the efficiency of the approach in case studies using real NGS data sets of the two monogenean ectoparasites species Gyrodactylus thymalli and Gyrodactylus derjavinoides including their respective teleost hosts European grayling (Thymallus thymallus) and Rainbow trout (Oncorhynchus mykiss). MITObim appeared superior to existing tools in terms of accuracy, runtime and memory requirements and fully automatically recovered mitochondrial genomes exceeding 99.5% accuracy from total genomic DNA derived NGS data sets in <24 h using a standard desktop computer. The approach overcomes the limitations of traditional strategies for obtaining mitochondrial genomes for species with little or no mitochondrial sequence information at hand and represents a fast and highly efficient in silico alternative to laborious conventional strategies relying on initial long-range PCR. We furthermore demonstrate the applicability of MITObim for metagenomic/pooled data sets using simulated data. MITObim is an easy to use tool even for biologists with modest bioinformatics experience. The software is made available as open source pipeline under the MIT license at https://github.com/chrishah/MITObim.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Use of DNA barcodes to identify flowering plants.

            Methods for identifying species by using short orthologous DNA sequences, known as "DNA barcodes," have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short ( approximately 450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The evolution of parasitism in plants.

              The multiple independent origins of plant parasitism suggest that numerous ancestral plant lineages possessed the developmental flexibility to meet the requirements of a parasitic life style, including such adaptations as the ability to recognize host plants, form an invasive haustorium, and regulate the transfer of nutrients and other molecules between two different plants. In this review, we focus on the Orobanchaceae, which are unique among the parasitic plants in that extant member species include the full range of host dependence from facultative to obligate parasites. The recent emergence of genomic resources for these plants should provide new insights into parasitic plant evolution and enable the development of novel genetic strategies for controlling parasitic weeds.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                05 December 2019
                December 2019
                : 20
                : 24
                : 6130
                Affiliations
                [1 ]Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Universidade Estadual Paulista (Unesp), Sao Paulo 14884-900, Brazil; daniel.pinheiro@ 123456unesp.br (D.G.P.); helen.penha@ 123456gmail.com (H.A.P.)
                [2 ]Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Krakow, Poland; bartosz.plachno@ 123456uj.edu.pl
                [3 ]J. Craig Venter Institute, La Jolla, CA 92037, USA; tmichael@ 123456jcvi.org
                [4 ]10X Genomics, Pleasanton, CA 94566, USA; ejmeer@ 123456gmail.com
                [5 ]Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Universidade Estadual Paulista (Unesp), Sao Paulo 14884-900, Brazil
                Author notes
                Author information
                https://orcid.org/0000-0002-6333-5268
                https://orcid.org/0000-0001-5579-5101
                https://orcid.org/0000-0003-0574-9865
                https://orcid.org/0000-0002-8876-3269
                Article
                ijms-20-06130
                10.3390/ijms20246130
                6940893
                31817365
                d710804c-bd1a-409a-a198-ebe2fa53f6ad
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 October 2019
                : 27 November 2019
                Categories
                Article

                Molecular biology
                utricularia amethystina,lentibulariaceae,chloroplast phylogenomics,organelle genome,carnivorous plants,polymorphic species,intraspecific variation,ndh genes

                Comments

                Comment on this article