18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of DNA methylation profiles during sheep skeletal muscle development using whole-genome bisulfite sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          DNA methylation is an epigenetic regulatory form that plays an important role in regulating the gene expression and the tissues development.. However, DNA methylation regulators involved in sheep muscle development remain unclear. To explore the functional importance of genome-scale DNA methylation during sheep muscle growth, this study systematically investigated the genome-wide DNA methylation profiles at key stages of Hu sheep developmental (fetus and adult) using deep whole-genome bisulfite sequencing (WGBS).

          Results

          Our study found that the expression levels of DNA methyltransferase (DNMT)-related genes were lower in fetal muscle than in the muscle of adults. The methylation levels in the CG context were higher than those in the CHG and CHH contexts, and methylation levels were highest in introns, followed by exons and downstream regions. Subsequently, we identified 48,491, 17, and 135 differentially methylated regions (DMRs) in the CG, CHG, and CHH sequence contexts and 11,522 differentially methylated genes (DMGs). The results of bisulfite sequencing PCR (BSP) correlated well with the WGBS-Seq data. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation analysis revealed that some DMGs were involved in regulating skeletal muscle development and fatty acid metabolism. By combining the WGBS-Seq and previous RNA-Seq data, a total of 159 overlap genes were obtained between differentially expressed genes (DEGs) and DMGs (FPKM > 10 and fold change > 4). Finally, we found that 9 DMGs were likely to be involved in muscle growth and metabolism of Hu sheep.

          Conclusions

          We systemically studied the global DNA methylation patterns of fetal and adult muscle development in Hu sheep, which provided new insights into a better understanding of the epigenetic regulation of sheep muscle development.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Genome-wide DNA methylation changes with age in disease-free human skeletal muscle

          A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome-wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3′ end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Looking back to the embryo: defining transcriptional networks in adult myogenesis.

            Skeletal muscle has an intrinsic capacity for regeneration following injury or exercise. The presence of adult stem cells in various tissues with myogenic potential provides new opportunities for cell-based therapies to treat muscle disease. Recent studies have shown a conserved transcriptional hierarchy that regulates the myogenic differentiation of both embryonic and adult stem cells. Importantly, the molecules and signalling pathways that induce myogenic determination in the embryo might be manipulated or mimicked to direct the differentiation of adult stem cells either in vivo or ex vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial.

              Background: Dietary fat composition can affect ectopic lipid accumulation and, thereby, insulin resistance. Diets that are high in saturated fatty acids (SFAs) or polyunsaturated fatty acids (PUFAs) have different metabolic responses.Objective: We investigated whether the epigenome of human adipose tissue is affected differently by dietary fat composition and general overfeeding in a randomized trial.Design: We studied the effects of 7 wk of excessive SFA (n = 17) or PUFA (n = 14) intake (+750 kcal/d) on the DNA methylation of ∼450,000 sites in human subcutaneous adipose tissue. Both diets resulted in similar body weight increases. We also combined the data from the 2 groups to examine the overall effect of overfeeding on the DNA methylation in adipose tissue.Results: The DNA methylation of 4875 Cytosine-phosphate-guanine (CpG) sites was affected differently between the 2 diets. Furthermore, both the SFA and PUFA diets increased the mean degree of DNA methylation in adipose tissue, particularly in promoter regions. However, although the mean methylation was changed in 1797 genes [e.g., alpha-ketoglutarate dependent dioxygenase (FTO), interleukin 6 (IL6), insulin receptor (INSR), neuronal growth regulator 1 (NEGR1), and proopiomelanocortin (POMC)] by PUFAs, only 125 genes [e.g., adiponectin, C1Q and collagen domain containing (ADIPOQ)] were changed by SFA overfeeding. In addition, the SFA diet significantly altered the expression of 28 transcripts [e.g., acyl-CoA oxidase 1 (ACOX1) and FAT atypical cadherin 1 (FAT1)], whereas the PUFA diet did not significantly affect gene expression. When the data from the 2 diet groups were combined, the mean methylation of 1444 genes, including fatty acid binding protein 1 (FABP1), fatty acid binding protein 2 (FABP2), melanocortin 2 receptor (MC2R), MC3R, PPARG coactivator 1 α (PPARGC1A), and tumor necrosis factor (TNF), was changed in adipose tissue by overfeeding. Moreover, the baseline DNA methylation of 12 CpG sites that was annotated to 9 genes [e.g., mitogen-activated protein kinase 7 (MAPK7), melanin concentrating hormone receptor 1 (MCHR1), and splicing factor SWAP homolog (SFRS8)] was associated with the degree of weight increase in response to extra energy intake.Conclusions: SFA overfeeding and PUFA overfeeding induce distinct epigenetic changes in human adipose tissue. In addition, we present data that suggest that baseline DNA methylation can predict weight increase in response to overfeeding in humans. This trial was registered at clinicaltrials.gov as NCT01427140.
                Bookmark

                Author and article information

                Contributors
                caeet@njau.edu.cn
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                29 April 2020
                29 April 2020
                2020
                : 21
                : 327
                Affiliations
                ISNI 0000 0000 9750 7019, GRID grid.27871.3b, Jiangsu Livestock Embryo Engineering Laboratory, , College of Animal Science and Technology, Nanjing Agricultural University, ; Nanjing, 210095 China
                Article
                6751
                10.1186/s12864-020-6751-5
                7191724
                32349667
                d80f49b4-8ede-4110-9632-554ff30e8779
                © The Author(s). 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 5 February 2020
                : 21 April 2020
                Funding
                Funded by: Jiangsu Agricultural Industry Technology System
                Award ID: (JATS [2019]419
                Award Recipient :
                Funded by: China Agricultural Research System
                Award ID: CARS-38
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2020

                Genetics
                dna methylation,wgbs,skeletal muscle,development,sheep
                Genetics
                dna methylation, wgbs, skeletal muscle, development, sheep

                Comments

                Comment on this article