Blog
About

8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vitamin D attenuates hyperoxia-induced lung injury through downregulation of Toll-like receptor 4

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With considerable morbidity and mortality, bron-chopulmonary dysplasia (BPD) is a focus of attention in neonatology. Hyperoxia-induced lung injury has long been used as a model of BPD. Among all the signaling pathways involved, Toll-like receptor 4 (TLR4) has been demonstrated to play an important role, and is known to be regulated by vitamin D. This study aimed at elucidating the effect of vitamin D on hyperoxia-induced lung injury and the role of TLR4 in the process. Vitamin D was administered to hyperoxia-treated neonatal rats to investigate changes in the morphology of lungs and expression of pro-inflammatory cytokines, apoptotic proteins and TLR4. Vitamin D attenuated hyperoxia-induced lung injury by protecting the integrity of the lung structure, decreasing extracellular matrix deposition and inhibiting inflammation. The upregulation of TLR4 by hyperoxia was ameliorated by vitamin D and apoptosis was reduced. Vitamin D administration antagonized the activation of TLR4 and therefore alleviated inflammation, reduced apoptosis and preserved lung structure.

          Related collections

          Most cited references 28

          • Record: found
          • Abstract: found
          • Article: not found

          The Role of Toll-Like Receptor 4 in Infectious and Noninfectious Inflammation

          Toll-like receptor 4 (TLR4) belongs to the family of pattern recognition receptors (PRRs). They are highly conserved receptors that recognize conserved pathogen-associated molecular patterns (PAMPs), thus representing the first line of defense against infections. TLR4 has been long recognized as the sensing receptor for gram-negative lipopolysaccharide (LPS). In addition, it also binds endogenous molecules produced as a result of tissue injury. Hence, TLR4 represents a key receptor on which both infectious and noninfectious stimuli converge to induce a proinflammatory response. TLR4-mediated inflammation, triggered by exogenous or endogenous ligands, is also involved in several acute and chronic diseases, having a pivotal role as amplifier of the inflammatory response. This review focuses on the research progress about the role of TLR4 activation in infectious and noninfectious (e.g., sterile) inflammation and the effects of TLR4 signaling in some pathological conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia.

            Alveolarization is the process by which the alveoli, the principal gas exchange units of the lung, are formed. Along with the maturation of the pulmonary vasculature, alveolarization is the objective of late lung development. The terminal airspaces that were formed during early lung development are divided by the process of secondary septation, progressively generating an increasing number of alveoli that are of smaller size, which substantially increases the surface area over which gas exchange can take place. Disturbances to alveolarization occur in bronchopulmonary dysplasia (BPD), which can be complicated by perturbations to the pulmonary vasculature that are associated with the development of pulmonary hypertension. Disturbances to lung development may also occur in persistent pulmonary hypertension of the newborn in term newborn infants, as well as in patients with congenital diaphragmatic hernia. These disturbances can lead to the formation of lungs with fewer and larger alveoli and a dysmorphic pulmonary vasculature. Consequently, affected lungs exhibit a reduced capacity for gas exchange, with important implications for morbidity and mortality in the immediate postnatal period and respiratory health consequences that may persist into adulthood. It is the objective of this Perspectives article to update the reader about recent developments in our understanding of the molecular mechanisms of alveolarization and the pathogenesis of BPD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vitamin D receptor activation protects against myocardial reperfusion injury through inhibition of apoptosis and modulation of autophagy.

              To determine the roles of vitamin D receptor (VDR) in ischemia/reperfusion-induced myocardial injury and to investigate the underlying mechanisms involved. The endogenous VDR expression was detected in the mouse heart, and myocardial ischemia/reperfusion (MI/R) upregulated VDR expression. Activation of VDR by natural and synthetic agonists reduced myocardial infarct size and improved cardiac function. Mechanistically, VDR activation inhibited endoplasmic reticulum (ER) stress (determined by the reduction of CCAAT/enhancer-binding protein homologous protein expression and caspase-12 activation), attenuated mitochondrial impairment (determined by the decrease of mitochondrial cytochrome c release and caspase-9 activation), and reduced cardiomyocyte apoptosis. Furthermore, VDR activation significantly inhibited MI/R-induced autophagy dysfunction (determined by the inhibition of Beclin 1 over-activation, the reduction of autophagosomes, the LC3-II/LC3-I ratio, p62 protein abundance, and the restoration of autophagy flux). Moreover, VDR activation inhibited MI/R-induced oxidative stress through a metallothionein-dependent mechanism. The cardioprotective effects of VDR agonists mentioned earlier were impaired in the setting of cardiac-specific VDR silencing. In contrast, adenovirus-mediated cardiac VDR overexpression decreased myocardial infarct size and improved cardiac function through attenuating oxidative stress, and inhibiting apoptosis and autophagy dysfunction. Our data demonstrate that VDR is a novel endogenous self-defensive and cardioprotective receptor against MI/R injury, via mechanisms (at least in part) reducing oxidative stress, and inhibiting apoptosis and autophagy dysfunction-mediated cell death.
                Bookmark

                Author and article information

                Journal
                Int J Mol Med
                Int. J. Mol. Med
                IJMM
                International Journal of Molecular Medicine
                D.A. Spandidos
                1107-3756
                1791-244X
                June 2017
                21 April 2017
                21 April 2017
                : 39
                : 6
                : 1403-1408
                Affiliations
                Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
                Author notes
                Correspondence to: Professor Jianhua Fu, Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning 110004, P.R. China, E-mail: fujh@ 123456sj-hospital.org
                Article
                ijmm-39-06-1403
                10.3892/ijmm.2017.2961
                5428952
                28440468
                Copyright: © Yao et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                Categories
                Articles

                Comments

                Comment on this article