25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Review: Synovial Cell Metabolism and Chronic Inflammation in Rheumatoid Arthritis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metabolomic studies of body fluids show that immune-mediated inflammatory diseases such as rheumatoid arthritis (RA) are associated with metabolic disruption. This is likely to reflect the increased bioenergetic and biosynthetic demands of sustained inflammation and changes in nutrient and oxygen availability in damaged tissue. The synovial membrane lining layer is the principal site of inflammation in RA. Here, the resident cells are fibroblast-like synoviocytes (FLS) and synovial tissue macrophages, which are transformed toward overproduction of enzymes that degrade cartilage and bone and cytokines that promote immune cell infiltration. Recent studies have shown metabolic changes in both FLS and macrophages from RA patients, and these may be therapeutically targetable. However, because the origins and subset-specific functions of synoviocytes are poorly understood, and the signaling modules that control metabolic deviation in RA synovial cells are yet to be explored, significant additional research is needed to translate these findings to clinical application. Furthermore, in many inflamed tissues, different cell types can forge metabolic collaborations through solute carriers in their membranes to meet a high demand for energy or biomolecules. Such relationships are likely to exist in the synovium and have not been studied. Finally, it is not yet known whether metabolic change is a consequence of disease or whether primary changes to cellular metabolism might underlie or contribute to the pathogenesis of early-stage disease. In this review article, we collate what is known about metabolism in synovial tissue cells and highlight future directions of research in this area.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis.

          Rheumatoid arthritis (RA) remains a significant unmet medical need despite significant therapeutic advances. The pathogenesis of RA is complex and includes many cell types, including T cells, B cells, and macrophages. Fibroblast-like synoviocytes (FLS) in the synovial intimal lining also play a key role by producing cytokines that perpetuate inflammation and proteases that contribute to cartilage destruction. Rheumatoid FLS develop a unique aggressive phenotype that increases invasiveness into the extracellular matrix and further exacerbates joint damage. Recent advances in understanding the biology of FLS, including their regulation regulate innate immune responses and activation of intracellular signaling mechanisms that control their behavior, provide novel insights into disease mechanisms. New agents that target FLS could potentially complement the current therapies without major deleterious effect on adaptive immune responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of mitochondrial biogenesis.

            Although it is well established that physical activity increases mitochondrial content in muscle, the molecular mechanisms underlying this process have only recently been elucidated. Mitochondrial dysfunction is an important component of different diseases associated with aging, such as Type 2 diabetes and Alzheimer's disease. PGC-1alpha (peroxisome-proliferator-activated receptor gamma co-activator-1alpha) is a co-transcriptional regulation factor that induces mitochondrial biogenesis by activating different transcription factors, including nuclear respiratory factor 1 and nuclear respiratory factor 2, which activate mitochondrial transcription factor A. The latter drives transcription and replication of mitochondrial DNA. PGC-1alpha itself is regulated by several different key factors involved in mitochondrial biogenesis, which will be reviewed in this chapter. Of those, AMPK (AMP-activated protein kinase) is of major importance. AMPK acts as an energy sensor of the cell and works as a key regulator of mitochondrial biogenesis. AMPK activity has been shown to decrease with age, which may contribute to decreased mitochondrial biogenesis and function with aging. Given the potentially important role of mitochondrial dysfunction in the pathogenesis of numerous diseases and in the process of aging, understanding the molecular mechanisms regulating mitochondrial biogenesis and function may provide potentially important novel therapeutic targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of innate immune cell function by mTOR.

              The innate immune system is central for the maintenance of tissue homeostasis and quickly responds to local or systemic perturbations by pathogenic or sterile insults. This rapid response must be metabolically supported to allow cell migration and proliferation and to enable efficient production of cytokines and lipid mediators. This Review focuses on the role of mammalian target of rapamycin (mTOR) in controlling and shaping the effector responses of innate immune cells. mTOR reconfigures cellular metabolism and regulates translation, cytokine responses, antigen presentation, macrophage polarization and cell migration. The mTOR network emerges as an integrative rheostat that couples cellular activation to the environmental and intracellular nutritional status to dictate and optimize the inflammatory response. A detailed understanding of how mTOR metabolically coordinates effector responses by myeloid cells will provide important insights into immunity in health and disease.
                Bookmark

                Author and article information

                Journal
                Arthritis & Rheumatology
                Arthritis Rheumatol
                Wiley
                23265191
                July 2018
                July 2018
                June 04 2018
                : 70
                : 7
                : 984-999
                Affiliations
                [1 ]University of Birmingham; Queen Elizabeth Hospital and National Institute for Health Research; Birmingham Biomedical Research Centre; Birmingham UK
                [2 ]University of California; San Diego
                [3 ]University of Birmingham; Queen Elizabeth Hospital; Birmingham UK
                [4 ]University of Texas at Austin
                [5 ]University of Birmingham; Queen Elizabeth Hospital; National Institute for Health Research; Birmingham Biomedical Research Centre; Birmingham UK
                [6 ]University of Oxford; Oxford UK
                Article
                10.1002/art.40504
                6019623
                29579371
                da6d9a6b-6b20-4f34-93e8-dbebe74b9369
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article