3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bioinformatics analysis identifies hub genes and pathways in nasopharyngeal carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the present study was to identify genes associated with and the underlying mechanisms in nasopharyngeal carcinoma (NPC) using microarray data. GSE12452 and GSE34573 gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. GEO2R was utilized to obtain differentially expressed genes (DEGs). In addition, the Database for Annotation, Visualization and Integrated Discovery was used to perform pathway enrichment analyses for DEGs using the Gene Ontology (GO) annotation along with the Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, Cytoscape was used to perform module analysis of the protein-protein interaction (PPI) network and pathways of the hub genes were studied. A total of 298 genes were ascertained as DEGs in the two datasets. To functionally categorize these DEGs, we obtained 82 supplemented GO terms along with 7 KEGG pathways. Subsequently, a PPI network consisting of 10 hub genes with high degrees of interaction was constructed. These hub genes included cyclin-dependent kinase (CDK) 1, structural maintenance of chromosomes (SMC) 4, kinetochore-associated (KNTC) 1, kinesin family member (KIF) 23, aurora kinase A (AURKA), ATAD (ATPase family AAA domain containing) 2, NDC80 kinetochore complex component, enhancer of zeste 2 polycomb repressive complex 2 subunit, BUB1 mitotic checkpoint serine/threonine kinase and protein regulator of cytokinesis 1. CDK1, SMC4, KNTC1, KIF23, AURKA and ATAD2 presented with high areas under the curve in receiver operator curves, suggesting that these genes may be diagnostic markers for nasopharyngeal carcinoma. In conclusion, it was proposed that CDK1, SMC4, KNTC1, KIF23, AURKA and ATAD2 may be involved in the tumorigenesis of NPC. Furthermore, they may be utilized as molecular biomarkers in early diagnosis of NPC.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          The Gene Ontology (GO) project in 2006

          (2005)
          The Gene Ontology (GO) project () develops and uses a set of structured, controlled vocabularies for community use in annotating genes, gene products and sequences (also see ). The GO Consortium continues to improve to the vocabulary content, reflecting the impact of several novel mechanisms of incorporating community input. A growing number of model organism databases and genome annotation groups contribute annotation sets using GO terms to GO's public repository. Updates to the AmiGO browser have improved access to contributed genome annotations. As the GO project continues to grow, the use of the GO vocabularies is becoming more varied as well as more widespread. The GO project provides an ontological annotation system that enables biologists to infer knowledge from large amounts of data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The prevalence and prevention of nasopharyngeal carcinoma in China

            Nasopharyngeal carcinoma (NPC) has remarkable epidemiological features, including regional, racial, and familial aggregations. The aim of this review is to describe the epidemiological characteristics of NPC and to propose possible causes for the high incidence patterns in southern China. Since the etiology of NPC is not completely understood, approaches to primary prevention of NPC remain under consideration. This situation highlights the need to conduct secondary prevention, including improving rates of early detection, early diagnosis, and early treatment in NPC patients. Since the 1970's, high-risk populations in southern China have been screened extensively for early detection of NPC using anti–Epstein-Barr virus (EBV) serum biomarkers. This review summarizes several large screening studies that have been conducted in the high-incidence areas of China. Screening markers, high-risk age range for screening, time intervals for blood re-examination, and the effectiveness of these screening studies will be discussed. Conduction of prospective randomized controlled screening trials in southern China can be expected to maximize the cost-effectiveness of early NPC detection screening.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Long non-coding RNAs and complex diseases: from experimental results to computational models

              Abstract LncRNAs have attracted lots of attentions from researchers worldwide in recent decades. With the rapid advances in both experimental technology and computational prediction algorithm, thousands of lncRNA have been identified in eukaryotic organisms ranging from nematodes to humans in the past few years. More and more research evidences have indicated that lncRNAs are involved in almost the whole life cycle of cells through different mechanisms and play important roles in many critical biological processes. Therefore, it is not surprising that the mutations and dysregulations of lncRNAs would contribute to the development of various human complex diseases. In this review, we first made a brief introduction about the functions of lncRNAs, five important lncRNA-related diseases, five critical disease-related lncRNAs and some important publicly available lncRNA-related databases about sequence, expression, function, etc. Nowadays, only a limited number of lncRNAs have been experimentally reported to be related to human diseases. Therefore, analyzing available lncRNA–disease associations and predicting potential human lncRNA–disease associations have become important tasks of bioinformatics, which would benefit human complex diseases mechanism understanding at lncRNA level, disease biomarker detection and disease diagnosis, treatment, prognosis and prevention. Furthermore, we introduced some state-of-the-art computational models, which could be effectively used to identify disease-related lncRNAs on a large scale and select the most promising disease-related lncRNAs for experimental validation. We also analyzed the limitations of these models and discussed the future directions of developing computational models for lncRNA research.
                Bookmark

                Author and article information

                Journal
                Oncol Lett
                Oncol Lett
                OL
                Oncology Letters
                D.A. Spandidos
                1792-1074
                1792-1082
                October 2019
                02 August 2019
                02 August 2019
                : 18
                : 4
                : 3637-3645
                Affiliations
                Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning 530021, P.R. China
                Author notes
                Correspondence to: Professor Rensheng Wang, Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Guangxi, Nanning 530021, P.R. China, E-mail: gxmuwangrensheng@ 123456163.com
                Article
                OL-0-0-10707
                10.3892/ol.2019.10707
                6732963
                31516577
                dd32954a-3894-4b5d-8e79-492f61a31f5d
                Copyright: © Liu et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 03 July 2018
                : 03 May 2019
                Categories
                Articles

                Oncology & Radiotherapy
                nasopharyngeal carcinoma,gene expression omnibus,bioinformatics analysis,diagnosis,microarray

                Comments

                Comment on this article