7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Subacute toxicity of mesoporous silica nanoparticles to the intestinal tract and the underlying mechanism

      , , , , , ,
      Journal of Hazardous Materials
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation

          The NLRP3 inflammasome is a critical component of the innate immune system that mediates caspase-1 activation and the secretion of proinflammatory cytokines IL-1β/IL-18 in response to microbial infection and cellular damage. However, the aberrant activation of the NLRP3 inflammasome has been linked with several inflammatory disorders, which include cryopyrin-associated periodic syndromes, Alzheimer’s disease, diabetes, and atherosclerosis. The NLRP3 inflammasome is activated by diverse stimuli, and multiple molecular and cellular events, including ionic flux, mitochondrial dysfunction, and the production of reactive oxygen species, and lysosomal damage have been shown to trigger its activation. How NLRP3 responds to those signaling events and initiates the assembly of the NLRP3 inflammasome is not fully understood. In this review, we summarize our current understanding of the mechanisms of NLRP3 inflammasome activation by multiple signaling events, and its regulation by post-translational modifications and interacting partners of NLRP3.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional interactions between the gut microbiota and host metabolism.

            The link between the microbes in the human gut and the development of obesity, cardiovascular disease and metabolic syndromes, such as type 2 diabetes, is becoming clearer. However, because of the complexity of the microbial community, the functional connections are less well understood. Studies in both mice and humans are helping to show what effect the gut microbiota has on host metabolism by improving energy yield from food and modulating dietary or the host-derived compounds that alter host metabolic pathways. Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, we will be in a better position to develop treatments for metabolic disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolomics: beyond biomarkers and towards mechanisms.

              Metabolomics, which is the profiling of metabolites in biofluids, cells and tissues, is routinely applied as a tool for biomarker discovery. Owing to innovative developments in informatics and analytical technologies, and the integration of orthogonal biological approaches, it is now possible to expand metabolomic analyses to understand the systems-level effects of metabolites. Moreover, because of the inherent sensitivity of metabolomics, subtle alterations in biological pathways can be detected to provide insight into the mechanisms that underlie various physiological conditions and aberrant processes, including diseases.
                Bookmark

                Author and article information

                Journal
                Journal of Hazardous Materials
                Journal of Hazardous Materials
                Elsevier BV
                03043894
                May 2021
                May 2021
                : 409
                : 124502
                Article
                10.1016/j.jhazmat.2020.124502
                33229260
                dd4737b3-8657-458b-8bd8-0afc9343e179
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article