41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The complete mitochondrial genomes of three parasitic nematodes of birds: a unique gene order and insights into nematode phylogeny

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Analyses of mitochondrial (mt) genome sequences in recent years challenge the current working hypothesis of Nematoda phylogeny proposed from morphology, ecology and nuclear small subunit rRNA gene sequences, and raise the need to sequence additional mt genomes for a broad range of nematode lineages.

          Results

          We sequenced the complete mt genomes of three Ascaridia species (family Ascaridiidae) that infest chickens, pigeons and parrots, respectively. These three Ascaridia species have an identical arrangement of mt genes to each other but differ substantially from other nematodes. Phylogenetic analyses of the mt genome sequences of the Ascaridia species, together with 62 other nematode species, support the monophylies of seven high-level taxa of the phylum Nematoda: 1) the subclass Dorylaimia; 2) the orders Rhabditida, Trichinellida and Mermithida; 3) the suborder Rhabditina; and 4) the infraorders Spiruromorpha and Oxyuridomorpha. Analyses of mt genome sequences, however, reject the monophylies of the suborders Spirurina and Tylenchina, and the infraorders Rhabditomorpha, Panagrolaimomorpha and Tylenchomorpha. Monophyly of the infraorder Ascaridomorpha varies depending on the methods of phylogenetic analysis. The Ascaridomorpha was more closely related to the infraorders Rhabditomorpha and Diplogasteromorpha (suborder Rhabditina) than they were to the other two infraorders of the Spirurina: Oxyuridorpha and Spiruromorpha. The closer relationship among Ascaridomorpha, Rhabditomorpha and Diplogasteromorpha was also supported by a shared common pattern of mitochondrial gene arrangement.

          Conclusions

          Analyses of mitochondrial genome sequences and gene arrangement has provided novel insights into the phylogenetic relationships among several major lineages of nematodes. Many lineages of nematodes, however, are underrepresented or not represented in these analyses. Expanding taxon sampling is necessary for future phylogenetic studies of nematodes with mt genome sequences.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          ProtTest: selection of best-fit models of protein evolution.

          Using an appropriate model of amino acid replacement is very important for the study of protein evolution and phylogenetic inference. We have built a tool for the selection of the best-fit model of evolution, among a set of candidate models, for a given protein sequence alignment. ProtTest is available under the GNU license from http://darwin.uvigo.es
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Big trees from little genomes: mitochondrial gene order as a phylogenetic tool.

            Gene arrangement comparisons are a powerful tool for phylogenetic studies, especially those focused on ancient relationships. Recent reports using metazoan mitochondrial genomes address evolutionary relationships as well as rates and mechanisms of rearrangement. Mitochondrial systems serve as a model for larger-scale comparisons of whole organismal genomes and a stimulus for developing methods for reconstructing the patterns of rearrangement.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Gene translocation links insects and crustaceans.

                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2013
                21 June 2013
                : 14
                : 414
                Affiliations
                [1 ]State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People’s Republic of China
                [2 ]College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, People’s Republic of China
                [3 ]Genecology Research Centre, University of the Sunshine Coast, Queensland, 4558, Australia
                [4 ]Department of Entomology, China Agricultural University, Beijing, 100193, People’s Republic of China
                Article
                1471-2164-14-414
                10.1186/1471-2164-14-414
                3693896
                23800363
                dd5c9e3b-e85e-494a-9755-caaf58842e0f
                Copyright ©2013 Liu et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 November 2012
                : 19 June 2013
                Categories
                Research Article

                Genetics
                mitochondrial genome,ascaridia,nematode,gene arrangement,phylogeny
                Genetics
                mitochondrial genome, ascaridia, nematode, gene arrangement, phylogeny

                Comments

                Comment on this article