11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Diet, Methyl Donors and DNA Methylation: Interactions between Dietary Folate, Methionine and Choline

      1 , 1
      The Journal of Nutrition
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA methylation influences the expression of some genes and depends upon the availability of methyl groups from S-adenosylmethionine (SAM). Dietary methyl groups derive from foods that contain methionine, one-carbon units and choline (or the choline metabolite betaine). Humans ingest approximately 50 mmol of methyl groups per day; 60% of them are derived from choline. Transmethylation metabolic pathways closely interconnect choline, methionine, methyltetrahydrofolate (methyl-THF) and vitamins B-6 and B-12. The pathways intersect at the formation of methionine from homocysteine. Perturbing the metabolism of one of these pathways results in compensatory changes in the others. For example, methionine can be formed from homocysteine using methyl groups from methyl-THF, or using methyl groups from betaine that are derived from choline. Similarly, methyl-THF can be formed from one-carbon units derived from serine or from the methyl groups of choline via dimethylglycine, and choline can be synthesized de novo using methyl groups derived from methionine (via SAM). When animals and humans are deprived of choline, they use more methyl-THF to remethylate homocysteine in the liver and increase dietary folate requirements. Conversely, when they are deprived of folate, they use more methyl groups from choline, increasing the dietary requirement for choline. The availability of transgenic and knockout mice has made possible additional studies that demonstrate the interrelationship of these methyl sources. In summary, as we consider dietary requirements and possible effects on DNA methylation, it is important to realize that methionine, methyl-THF and choline can be fungible sources of methyl groups, and the design of our studies should reflect this.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Role for DNA methylation in genomic imprinting.

          The paternal and maternal genomes are not equivalent and both are required for mammalian development. The difference between the parental genomes is believed to be due to gamete-specific differential modification, a process known as genomic imprinting. The study of transgene methylation has shown that methylation patterns can be inherited in a parent-of-origin-specific manner, suggesting that DNA methylation may play a role in genomic imprinting. The functional significance of DNA methylation in genomic imprinting was strengthened by the recent finding that CpG islands (or sites) in three imprinted genes, H19, insulin-like growth factor 2 (Igf-2), and Igf-2 receptor (Igf-2r), are differentially methylated depending on their parental origin. We have examined the expression of these three imprinted genes in mutant mice that are deficient in DNA methyltransferase activity. We report here that expression of all three genes was affected in mutant embryos: the normally silent paternal allele of the H19 gene was activated, whereas the normally active paternal allele of the Igf-2 gene and the active maternal allele of the Igf-2r gene were repressed. Our results demonstrate that a normal level of DNA methylation is required for controlling differential expression of the paternal and maternal alleles of imprinted genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification and characterization of a family of mammalian methyl-CpG binding proteins.

            Methylation at the DNA sequence 5'-CpG is required for mouse development. MeCP2 and MBD1 (formerly PCM1) are two known proteins that bind specifically to methylated DNA via a related amino acid motif and that can repress transcription. We describe here three novel human and mouse proteins (MBD2, MBD3, and MBD4) that contain the methyl-CpG binding domain. MBD2 and MBD4 bind specifically to methylated DNA in vitro. Expression of MBD2 and MBD4 tagged with green fluorescent protein in mouse cells shows that both proteins colocalize with foci of heavily methylated satellite DNA. Localization is disrupted in cells that have greatly reduced levels of CpG methylation. MBD3 does not bind methylated DNA in vivo or in vitro. MBD1, MBD2, MBD3, and MBD4 are expressed in somatic tissues, but MBD1 and MBD2 expression is reduced or absent in embryonic stem cells which are known to be deficient in MeCP1 activity. The data demonstrate that MBD2 and MBD4 bind specifically to methyl-CpG in vitro and in vivo and are therefore likely to be mediators of the biological consequences of the methylation signal.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Choline and human nutrition.

              Choline is crucial for sustaining life. It modulates the basic signaling processes within cells, is a structural element in membranes, and is vital during critical periods in brain development. Choline metabolism is closely interrelated with the metabolism of methionine and folate. We believe that the normal human diet provides sufficient choline to sustain healthy organ function. However, vulnerable populations may become choline deficient, including the growing infant, the pregnant or lactating woman, the cirrhotic, and the patient fed intravenously. Further studies of choline requirements in these groups are required.
                Bookmark

                Author and article information

                Journal
                The Journal of Nutrition
                Oxford University Press (OUP)
                0022-3166
                1541-6100
                August 2002
                August 01 2002
                August 2002
                August 01 2002
                : 132
                : 8
                : 2333S-2335S
                Affiliations
                [1 ]Department of Nutrition, School of Public Health, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7400
                Article
                10.1093/jn/132.8.2333S
                12163687
                dd699273-2612-4f10-b94f-dfe747930861
                © 2002
                History

                Comments

                Comment on this article