Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration.

      Anesthesia and Analgesia
      Anesthetics, Inhalation, administration & dosage, pharmacokinetics, pharmacology, Animals, Genetic Engineering, Humans, In Vitro Techniques, Ion Channels, drug effects, Models, Molecular, Movement, Pulmonary Alveoli, metabolism, Spinal Cord, physiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies using molecular modeling, genetic engineering, neurophysiology/pharmacology, and whole animals have advanced our understanding of where and how inhaled anesthetics act to produce immobility (minimum alveolar anesthetic concentration; MAC) by actions on the spinal cord. Numerous ligand- and voltage-gated channels might plausibly mediate MAC, and specific amino acid sites in certain receptors present likely candidates for mediation. However, in vivo studies to date suggest that several channels or receptors may not be mediators (e.g., gamma-aminobutyric acid A, acetylcholine, potassium, 5-hydroxytryptamine-3, opioids, and alpha(2)-adrenergic), whereas other receptors/channels (e.g., glycine, N-methyl-D-aspartate, and sodium) remain credible candidates.

          Related collections

          Author and article information

          Comments

          Comment on this article