4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The conserved AAA-ATPase PCH-2 TRIP13 regulates spindle checkpoint strength

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spindle checkpoint strength is dictated by the number of unattached kinetochores, cell volume, and cell fate. We show that the conserved AAA-ATPase PCH-2/TRIP13, which remodels the checkpoint effector Mad2 from an active conformation to an inactive one, controls checkpoint strength in Caenorhabditis elegans. Having previously established that this function is required for spindle checkpoint activation, we demonstrate that in cells genetically manipulated to decrease in cell volume, PCH-2 is no longer required for the spindle checkpoint or recruitment of Mad2 at unattached kinetochores. This role is not limited to large cells: the stronger checkpoint in germline precursor cells also depends on PCH-2. PCH-2 is enriched in germline precursor cells, and this enrichment relies on conserved factors that induce asymmetry in the early embryo. Finally, the stronger checkpoint in germline precursor cells is regulated by CMT-1, the ortholog of p31 comet, which is required for both PCH-2′s localization to unattached kinetochores and its enrichment in germline precursor cells. Thus, PCH-2, likely by regulating the availability of inactive Mad2 at and near unattached kinetochores, governs checkpoint strength. This requirement may be particularly relevant in oocytes and early embryos enlarged for developmental competence, cells that divide in syncytial tissues, and immortal germline cells .

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2

          The mitotic checkpoint prevents cells with unaligned chromosomes from prematurely exiting mitosis by inhibiting the anaphase-promoting complex/cyclosome (APC/C) from targeting key proteins for ubiquitin-mediated proteolysis. We have examined the mechanism by which the checkpoint inhibits the APC/C by purifying an APC/C inhibitory factor from HeLa cells. We call this factor the mitotic checkpoint complex (MCC) as it consists of hBUBR1, hBUB3, CDC20, and MAD2 checkpoint proteins in near equal stoichiometry. MCC inhibitory activity is 3,000-fold greater than that of recombinant MAD2, which has also been shown to inhibit APC/C in vitro. Surprisingly, MCC is not generated from kinetochores, as it is also present and active in interphase cells. However, only APC/C isolated from mitotic cells was sensitive to inhibition by MCC. We found that the majority of the APC/C in mitotic lysates is associated with the MCC, and this likely contributes to the lag in ubiquitin ligase activity. Importantly, chromosomes can suppress the reactivation of APC/C. Chromosomes did not affect the inhibitory activity of MCC or the stimulatory activity of CDC20. We propose that the preformed interphase pool of MCC allows for rapid inhibition of APC/C when cells enter mitosis. Unattached kinetochores then target the APC/C for sustained inhibition by the MCC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The PAR proteins: fundamental players in animal cell polarization.

            The par genes were discovered in genetic screens for regulators of cytoplasmic partitioning in the early embryo of C. elegans, and encode six different proteins required for asymmetric cell division by the worm zygote. Some of the PAR proteins are localized asymmetrically and form physical complexes with one another. Strikingly, the PAR proteins have been found to regulate cell polarization in many different contexts in diverse animals, suggesting they form part of an ancient and fundamental mechanism for cell polarization. Although the picture of how the PAR proteins function remains incomplete, cell biology and biochemistry are beginning to explain how PAR proteins polarize cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The genetics of Caenorhabditis elegans.

              Methods are described for the isolation, complementation and mapping of mutants of Caenorhabditis elegans, a small free-living nematode worm. About 300 EMS-induced mutants affecting behavior and morphology have been characterized and about one hundred genes have been defined. Mutations in 77 of these alter the movement of the animal. Estimates of the induced mutation frequency of both the visible mutants and X chromosome lethals suggests that, just as in Drosophila, the genetic units in C. elegans are large.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol Biol Cell
                molbiolcell
                mbc
                mboc
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                15 September 2020
                : 31
                : 20
                : 2219-2233
                Affiliations
                [a ]Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
                University of Wisconsin, Madison
                Author notes

                Author contributions: L.D., A.E.R., C.R.N., and N.B. provided conceptualization and methodology; L.D., A.E.R., and C.R.N. carried out the investigation; L.D. and N.B. wrote the original draft; L.D., A.E.R., C.R.N., and N.B. revised and edited it; N.B. supervised and acquired funding.

                Competing interests: The authors declare no competing interests.

                *Address correspondence to: Needhi Bhalla ( nbhalla@ 123456ucsc.edu ).
                Article
                E20-05-0310
                10.1091/mbc.E20-05-0310
                7550697
                32697629
                dfa57d8f-c0c7-44fc-bc5e-ca579d3856c2
                © 2020 Défachelles et al. “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology.

                This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License.

                History
                : 15 May 2020
                : 10 July 2020
                : 17 July 2020
                Categories
                Articles
                Cell Cycle

                Molecular biology
                Molecular biology

                Comments

                Comment on this article