7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of Expression and Its Clinical Significance of the Secreted Phosphoprotein 1 in Lung Adenocarcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To explore the expression of secreted phosphoprotein 1 (SPP1) in lung adenocarcinoma (LUAD), and evaluate its relationship with clinicopathological characteristics and prognosis of LUAD, and analyze the advantages of SPP1 as a potential prognostic marker in LUAD.

          Methods

          The expression of SPP1 in normal lung tissue and LUAD was analyzed from the Cancer Cell Line Encyclopedia (CCLE), Gene Expression Omnibus (GEO), and Human Protein Atlas (HPA) databases. GSE68465 was used to explore the relationship between the SPP1 expression and clinicopathological characteristics and the prognosis of LUAD patients. The relationship between SPP1 and immune infiltration in LUAD was analyzed by the Tumor Immune Estimation Resource (TIMER) database. Gene enrichment analysis was performed in GSEA. The Cancer Genome Atlas (TCGA)-LUAD data was used to verify the results.

          Results

          In the cell line level, non-small cell lung cancer ranked ninth among cancer cell lines based on SPP1 expression. In the messenger RNA (mRNA) and protein levels, SPP1 expression was higher in LUAD tissues than that in normal control. SPP1 expression was related to gender, N stage, histological grade, and progression or relapse. In men, SPP1 expression were higher compared to that in women. The higher the N stage, the higher the SPP1 expression level. As LUAD progresses or relapses, SPP1 expression could increase. In the pathological grade, the SPP1 expression was higher in LUAD samples with moderate differentiation. In addition, the overall 5-year survival rates of the SPP1 high and low expression groups were 50.574 and 59.181% [ P = 0.008; hazard ratio (HR) = 0.7057; 95% CI, 0.5467–0.9109], indicating that SPP1 had an impact on overall survival for LUAD patients. The relationship between SPP1 expression and CD4 + T cell, macrophage, neutrophil, and dendritic cell infiltration was weak in LUAD. SPP1 could be considered as an independent prognostic marker in LUAD ( P = 0.003; HR = 1.150; 95% CI, 1.048–1.261) by multivariate Cox regression analysis. The results of GSEA indicated that samples with high SPP1 expression were enriched in protein secretion, mTORC1 signaling, angiogenesis, and glycolysis pathway. The analysis results obtained by TCGA-LUAD data were basically consistent with the results obtained by GSE68465.

          Conclusions

          SPP1 can not only affect the occurrence and development of LUAD but also may be an independent prognostic marker of LUAD. SPP1 is expected to be a new target for molecular targeted therapy.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.

          We have generated a molecular taxonomy of lung carcinoma, the leading cause of cancer death in the United States and worldwide. Using oligonucleotide microarrays, we analyzed mRNA expression levels corresponding to 12,600 transcript sequences in 186 lung tumor samples, including 139 adenocarcinomas resected from the lung. Hierarchical and probabilistic clustering of expression data defined distinct subclasses of lung adenocarcinoma. Among these were tumors with high relative expression of neuroendocrine genes and of type II pneumocyte genes, respectively. Retrospective analysis revealed a less favorable outcome for the adenocarcinomas with neuroendocrine gene expression. The diagnostic potential of expression profiling is emphasized by its ability to discriminate primary lung adenocarcinomas from metastases of extra-pulmonary origin. These results suggest that integration of expression profile data with clinical parameters could aid in diagnosis of lung cancer patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas.

            Activation of the EGFR, KRAS, and ALK oncogenes defines 3 different pathways of molecular pathogenesis in lung adenocarcinoma. However, many tumors lack activation of any pathway (triple-negative lung adenocarcinomas) posing a challenge for prognosis and treatment. Here, we report an extensive genome-wide expression profiling of 226 primary human stage I-II lung adenocarcinomas that elucidates molecular characteristics of tumors that harbor ALK mutations or that lack EGFR, KRAS, and ALK mutations, that is, triple-negative adenocarcinomas. One hundred and seventy-four genes were selected as being upregulated specifically in 79 lung adenocarcinomas without EGFR and KRAS mutations. Unsupervised clustering using a 174-gene signature, including ALK itself, classified these 2 groups of tumors into ALK-positive cases and 2 distinct groups of triple-negative cases (groups A and B). Notably, group A triple-negative cases had a worse prognosis for relapse and death, compared with cases with EGFR, KRAS, or ALK mutations or group B triple-negative cases. In ALK-positive tumors, 30 genes, including ALK and GRIN2A, were commonly overexpressed, whereas in group A triple-negative cases, 9 genes were commonly overexpressed, including a candidate diagnostic/therapeutic target DEPDC1, that were determined to be critical for predicting a worse prognosis. Our findings are important because they provide a molecular basis of ALK-positive lung adenocarcinomas and triple-negative lung adenocarcinomas and further stratify more or less aggressive subgroups of triple-negative lung ADC, possibly helping identify patients who may gain the most benefit from adjuvant chemotherapy after surgical resection. ©2011 AACR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers.

              For almost four decades, my work has focused on one challenge: improving the delivery and efficacy of anticancer therapeutics. Working on the hypothesis that the abnormal tumor microenvironment-characterized by hypoxia and high interstitial fluid pressure--fuels tumor progression and treatment resistance, we developed an array of sophisticated imaging technologies and animal models as well as mathematic models to unravel the complex biology of tumors. Using these tools, we demonstrated that the blood and lymphatic vasculature, fibroblasts, immune cells, and extracellular matrix associated with tumors are abnormal, which together create a hostile tumor microenvironment. We next hypothesized that agents that induce normalization of the microenvironment can improve treatment outcome. Indeed, we demonstrated that judicious use of antiangiogenic agents--originally designed to starve tumors--could transiently normalize tumor vasculature, alleviate hypoxia, increase delivery of drugs and antitumor immune cells, and improve the outcome of various therapies. Our trials of antiangiogenics in patients with newly diagnosed and recurrent glioblastoma supported this concept. They revealed that patients whose tumor blood perfusion increased in response to cediranib survived 6 to 9 months longer than those whose blood perfusion did not increase. The normalization hypothesis also opened doors to treating various nonmalignant diseases characterized by abnormal vasculature, such as neurofibromatosis type 2. More recently, we discovered that antifibrosis drugs capable of normalizing the tumor microenvironment can improve the delivery and efficacy of nano- and molecular medicines. Our current efforts are directed at identifying predictive biomarkers and more-effective strategies to normalize the tumor microenvironment for enhancing anticancer therapies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                12 June 2020
                2020
                : 11
                : 547
                Affiliations
                [1] 1Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University , Wuhan, China
                [2] 2Department of Biological Repositories, Zhongnan Hospital of Wuhan University , Wuhan, China
                [3] 3Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University , Wuhan, China
                [4] 4Department of Urology, Zhongnan Hospital of Wuhan University , Wuhan, China
                [5] 5Department of Oncology, The First People’s Hospital of Tianmen , Tianmen, China
                [6] 6Human Genetics Resource Preservation Center of Hubei Province , Wuhan, China
                Author notes

                Edited by: Pinyi Lu, Biotechnology HPC Software Applications Institute (BHSAI), United States

                Reviewed by: Xu Zhang, Southwest University, China; Jianxiang Li, Medical College of Soochow University, China; Yang Xu, Zhejiang University, China

                *Correspondence: Sheng Li, lisheng-znyy@ 123456whu.edu.cn

                These authors share first authorship

                This article was submitted to Bioinformatics and Computational Biology, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2020.00547
                7303289
                32595698
                e007fb4c-58c6-40ef-ba2c-6a65452341f7
                Copyright © 2020 Guo, Huang, Wang, Liu, Li, Yao, Li and Hu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 February 2020
                : 07 May 2020
                Page count
                Figures: 6, Tables: 3, Equations: 0, References: 62, Pages: 11, Words: 0
                Categories
                Genetics
                Original Research

                Genetics
                secreted phosphoprotein 1,lung adenocarcinoma,prognosis,prognostic marker,osteopontin,bioinformatics

                Comments

                Comment on this article