2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Metal induced crystallized poly-Si-based conductive bridge resistive switching memory device with one transistor and one resistor architecture

      1 , 2 , 1 , 1
      Applied Physics Letters
      AIP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application.

          Through a simple industrialized technique which was completely fulfilled at room temperature, we have developed a kind of promising nonvolatile resistive switching memory consisting of Ag/ZnO:Mn/Pt with ultrafast programming speed of 5 ns, an ultrahigh R(OFF)/R(ON) ratio of 10(7), long retention time of more than 10(7) s, good endurance, and high reliability at elevated temperatures. Furthermore, we have successfully captured clear visualization of nanoscale Ag bridges penetrating through the storage medium, which could account for the high conductivity in the ON-state device. A model concerning redox reaction mediated formation and rupture of Ag bridges is therefore suggested to explain the memory effect. The Ag/ZnO:Mn/Pt device represents an ultrafast and highly scalable (down to sub-100-nm range) memory element for developing next generation nonvolatile memories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode.

            Resistive memory (ReRAM) based on a solid-electrolyte insulator is a promising nanoscale device and has great potentials in nonvolatile memory, analog circuits, and neuromorphic applications. The underlying resistive switching (RS) mechanism of ReRAM is suggested to be the formation and rupture of nanoscale conductive filament (CF) inside the solid-electrolyte layer. However, the random nature of the nucleation and growth of the CF makes their formation difficult to control, which is a major obstacle for ReRAM performance improvement. Here, we report a novel approach to resolve this challenge by adopting a metal nanocrystal (NC) covered bottom electrode (BE) to replace the conventional ReRAM BE. As a demonstration vehicle, a Ag/ZrO(2)/Cu NC/Pt structure is prepared and the Cu NC covered Pt BE can control CF nucleation and growth to provide superior uniformity of RS properties. The controllable growth of nanoscale CF bridges between Cu NC and Ag top electrode has been vividly observed by transmission electron microscopy (TEM). On the basis of energy-dispersive X-ray spectroscopy (EDS) and elemental mapping analyses, we further confirm that the chemical contents of the CF are mainly Ag atoms. These testing/metrology results are consistent with the simulation results of electric-field distribution, showing that the electric field will enhance and concentrate on the NC sites and control location and orientation of Ag CFs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoscale resistive switching devices: mechanisms and modeling.

              Resistive switching devices (also termed memristive devices or memristors) are two-terminal nonlinear dynamic electronic devices that can have broad applications in the fields of nonvolatile memory, reconfigurable logic, analog circuits, and neuromorphic computing. Current rapid advances in memristive devices in turn demand better understanding of the switching mechanism and the development of physics-based as well as simplified device models to guide future device designs and circuit-level applications. In this article, we review the physical processes behind resistive switching (memristive) phenomena and discuss the experimental and modeling efforts to explain these effects. In this article three categories of devices, in which the resistive switching effects are driven by cation migration, anion migration, and electronic effects, will be discussed. The fundamental driving forces and the stochastic nature of resistive switching will also be discussed.
                Bookmark

                Author and article information

                Journal
                Applied Physics Letters
                Appl. Phys. Lett.
                AIP Publishing
                0003-6951
                1077-3118
                November 16 2015
                November 16 2015
                : 107
                : 20
                : 203502
                Affiliations
                [1 ]Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 30010, Taiwan
                [2 ]United Microelectronics Corporation, Tainan 74147, Taiwan
                Article
                10.1063/1.4935862
                e035ffda-5538-4a4f-a77e-59e79d901920
                © 2015
                History

                Comments

                Comment on this article