4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Successful Results of Intracytoplasmic Sperm Injection of a Chinese Patient With Multiple Morphological Abnormalities of Sperm Flagella Caused by a Novel Splicing Mutation in CFAP251

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Asthenospermia is one of the most important causes of male infertility. Among asthenospermia, multiple morphological abnormalities of sperm flagella (MMAF) are relatively rare idiopathic conditions characterized by multiple defects in sperm flagella. Although many studies focusing on the genetic factors of MMAF have been conducted, its pathogenesis and treatment effect remain largely unknown. Here, we report a male patient from a nonconsanguineous Chinese family who exhibited a typical MMAF phenotype revealed by morphological analysis. We identified splicing mutations in CFAP251 (c.1192-3C>G), and the mutation was proven to cause exon skipping. In addition, western blotting and immunofluorescence analysis of the spermatozoa from the proband and a control subject revealed a significantly lower expression of CFAP251 protein due to pathogenic mutation. Interestingly, the patient’s mother was a heterozygous carrier for the mutation, but his father was not, and finally, the inheritance pattern was proven to be maternal uniparental disomy. We applied an intracytoplasmic sperm injection and achieved a successful pregnancy. Above all, our findings expand the spectrum of CFAP251 pathogenic mutations and provide more indications for clinical genetic counseling and assisted reproductive treatment for such patients.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fast and accurate short read alignment with Burrows–Wheeler transform

          Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

            The American College of Medical Genetics and Genomics (ACMG) previously developed guidance for the interpretation of sequence variants. 1 In the past decade, sequencing technology has evolved rapidly with the advent of high-throughput next generation sequencing. By adopting and leveraging next generation sequencing, clinical laboratories are now performing an ever increasing catalogue of genetic testing spanning genotyping, single genes, gene panels, exomes, genomes, transcriptomes and epigenetic assays for genetic disorders. By virtue of increased complexity, this paradigm shift in genetic testing has been accompanied by new challenges in sequence interpretation. In this context, the ACMG convened a workgroup in 2013 comprised of representatives from the ACMG, the Association for Molecular Pathology (AMP) and the College of American Pathologists (CAP) to revisit and revise the standards and guidelines for the interpretation of sequence variants. The group consisted of clinical laboratory directors and clinicians. This report represents expert opinion of the workgroup with input from ACMG, AMP and CAP stakeholders. These recommendations primarily apply to the breadth of genetic tests used in clinical laboratories including genotyping, single genes, panels, exomes and genomes. This report recommends the use of specific standard terminology: ‘pathogenic’, ‘likely pathogenic’, ‘uncertain significance’, ‘likely benign’, and ‘benign’ to describe variants identified in Mendelian disorders. Moreover, this recommendation describes a process for classification of variants into these five categories based on criteria using typical types of variant evidence (e.g. population data, computational data, functional data, segregation data, etc.). Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends that clinical molecular genetic testing should be performed in a CLIA-approved laboratory with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or equivalent.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A unique view on male infertility around the globe

              Background Infertility affects an estimated 15% of couples globally, amounting to 48.5 million couples. Males are found to be solely responsible for 20-30% of infertility cases and contribute to 50% of cases overall. However, this number does not accurately represent all regions of the world. Indeed, on a global level, there is a lack of accurate statistics on rates of male infertility. Our report examines major regions of the world and reports rates of male infertility based on data on female infertility. Methods Our search consisted of systematic reviews, meta-analyses, and population-based studies by searching the terms “epidemiology, male infertility, and prevalence.” We identified 16 articles for detailed study. We typically used the assumption that 50% of all cases of infertility are due to female factors alone, 20-30% are due to male factors alone, and the remaining 20-30% are due to a combination of male and female factors. Therefore, in regions of the world where male factor or rates of male infertility were not reported, we used this assumption to calculate general rates of male factor infertility. Results Our calculated data showed that the distribution of infertility due to male factor ranged from 20% to 70% and that the percentage of infertile men ranged from 2·5% to 12%. Infertility rates were highest in Africa and Central/Eastern Europe. Additionally, according to a variety of sources, rates of male infertility in North America, Australia, and Central and Eastern Europe varied from 4 5-6%, 9%, and 8-12%, respectively. Conclusion This study demonstrates a novel and unique way to calculate the distribution of male infertility around the world. According to our results, at least 30 million men worldwide are infertile with the highest rates in Africa and Eastern Europe. Results indicate further research is needed regarding etiology and treatment, reduce stigma & cultural barriers, and establish a more precise calculation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                11 January 2022
                2021
                : 12
                : 783790
                Affiliations
                The Center of Reproduction and Genetics, Suzhou Municipal Hospital , The Affiliated Suzhou Hospital of Nanjing Medical University , Gusu School , Nanjing Medical University , Suzhou, China
                Author notes

                Edited by: Maria Grazia Giansanti, Italian National Research Council, Italy

                Reviewed by: Xuan Shang, Southern Medical University, China

                Qingnan Liang, Baylor College of Medicine, United States

                *Correspondence: Shenmin Yang, drim2004@ 123456126.com ; Jingjing Xiang, xiangjingjing2013@ 123456163.com
                [ † ]

                These authors have contributed equally to this work and share first authorship

                This article was submitted to Genetics of Common and Rare Diseases, a section of the journal Frontiers in Genetics

                Article
                783790
                10.3389/fgene.2021.783790
                8787216
                35087568
                e1a048a2-e51a-4261-833d-8fe158c82e03
                Copyright © 2022 Wang, Zhang, Tang, Zheng, Li, Yang and Xiang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 September 2021
                : 22 December 2021
                Categories
                Genetics
                Original Research

                Genetics
                mmaf,icsi (intracytoplasmic sperm injection),male infertility,cfap251,uniparental disomy (upd)

                Comments

                Comment on this article