12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In Vivo Models for Incretin Research: From the Intestine to the Whole Body

      review-article
      Endocrinology and Metabolism
      Korean Endocrine Society
      Incretins, Enteroendocrine cells, Bariatric surgery

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Incretin hormones are produced by enteroendocrine cells (EECs) in the intestine in response to ingested nutrient stimuli. The incretin effect is defined as the difference in the insulin secretory response between the oral glucose tolerance test and an isoglycemic intravenous glucose infusion study. The pathophysiology of the decreased incretin effect has been studied as decreased incretin sensitivity and/or β-cell dysfunction per se. Interestingly, robust increases in endogenous incretin secretion have been observed in many types of metabolic/bariatric surgery. Therefore, metabolic/bariatric surgery has been extensively studied for incretin physiology, not only the hormones themselves but also alterations in EECs distribution and genetic expression levels of gut hormones. These efforts have given us an enormous understanding of incretin biology from synthesis to in vivo behavior. Further innovative studies are needed to determine the mechanisms and targets of incretin hormones.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus.

          In type-2 diabetes, the overall incretin effect is reduced. The present investigation was designed to compare insulinotropic actions of exogenous incretin hormones (gastric inhibitory peptide [GIP] and glucagon-like peptide 1 [GLP-1] [7-36 amide]) in nine type-2 diabetic patients (fasting plasma glucose 7.8 mmol/liter; hemoglobin A1c 6.3 +/- 0.6%) and in nine age- and weight-matched normal subjects. Synthetic human GIP (0.8 and 2.4 pmol/kg.min over 1 h each), GLP-1 [7-36 amide] (0.4 and 1.2 pmol/kg.min over 1 h each), and placebo were administered under hyperglycemic clamp conditions (8.75 mmol/liter) in separate experiments. Plasma GIP and GLP-1 [7-36 amide] concentrations (radioimmunoassay) were comparable to those after oral glucose with the low, and clearly supraphysiological with the high infusion rates. Both GIP and GLP-1 [7-36 amide] dose-dependently augmented insulin secretion (insulin, C-peptide) in both groups (P < 0.05). With GIP, the maximum effect in type-2 diabetic patients was significantly lower (by 54%; P < 0.05) than in normal subjects. With GLP-1 [7-36 amide] type-2 diabetic patients reached 71% of the increments in C-peptide of normal subjects (difference not significant). Glucagon was lowered during hyperglycemic clamps in normal subjects, but not in type-2 diabetic patients, and further by GLP-1 [7-36 amide] in both groups (P < 0.05), but not by GIP. In conclusion, in mild type-2 diabetes, GLP-1 [7-36 amide], in contrast to GIP, retains much of its insulinotropic activity. It also lowers glucagon concentrations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses.

            Integrated insulin secretion rates calculated from peripheral venous C-peptide measurements by two-compartment kinetic analysis were measured in six young normal subjects after increasing oral glucose loads of 25, 50, and 100 g and respective isoglycemic glucose infusions. The differences in B-cell secretory responses between oral and iv glucose challenges were attributed to factors other than glycemia itself (incretin effect). Both insulin and C-peptide concentrations as well as calculated integrated insulin secretion rates increased with increasing oral glucose loads. Due to the similarity in the glucose profiles after all oral loads, almost identical amounts of iv glucose (approximately 20 g) were infused in all "isoglycemic" infusion experiments, with resulting similar hormone profiles and insulin secretion rates. The percent contribution of incretin factors to total immunoreactive insulin responses after 25, 50, and 100 g glucose (85.6%, 74.9%, and 93.0%; response to oral load, 100%) was significantly higher than their contribution to integrated C-peptide responses (27.6-62.9%) or calculated integrated insulin secretion rates (19.2-61.0%). These findings indicate that the degree of incretin stimulation of insulin secretion depends on the amount of glucose ingested. A discrepancy between the estimates of the incretin effect derived from peripheral venous insulin responses, on the one hand, and C-peptide responses or calculated insulin secretion rates, on the other hand, exists. Inasmuch as peripheral insulin values reflect both insulin secretion and hepatic insulin removal, this discrepancy suggests that elimination kinetics of insulin differ between oral and iv glucose administration. This difference can be related to a significantly reduced fractional hepatic insulin extraction after oral (46.9-54.6%) compared to iv (63.4-76.5%) glucose administration when calculated by a three-compartment kinetic model. This reduction in fractional hepatic insulin extraction could be caused by gastrointestinal factors (hormones or nerves) stimulated in the course of glucose ingestion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduced incretin effect in type 2 (non-insulin-dependent) diabetes.

              Integrated incremental immunoreactive insulin and connecting peptide responses to an oral glucose load of 50 g and an "isoglycaemic" intravenous glucose infusion, respectively, were measured in 14 Type 2 (non-insulin-dependent) diabetic patients and 8 age- and weight-matched metabolically healthy control subjects. Differences between responses to oral and intravenous glucose administration are attributed to factors other than glucose itself (incretin effect). Despite higher glucose increases, immunoreactive insulin and connecting peptide responses after oral glucose were delayed in diabetic patients. Integrated responses were not significantly different between both groups. However, during "isoglycaemic" intravenous infusion, insulin and connecting peptide responses were greater in diabetic patients than in control subjects as a consequence of the higher glycaemic stimulus. The contribution of incretin factors to total insulin responses was 72.8 +/- 6.9% (100% = response to oral load) in control subjects and 36.0 +/- 8.8% in diabetic patients (p less than or equal to 0.05). The contribution to connecting peptide responses was 58.4 +/- 7.6% in control subjects and 7.6 +/- 14.5% (p less than or equal to 0.05) in diabetic patients. Ratios of integrated insulin to connecting peptide responses suggest a reduced (hepatic) insulin extraction in control subjects after oral as compared to intravenous glucose. This was not the case in diabetic patients. Immunoreactive gastric inhibitory polypeptide responses were not different between control subjects and diabetic patients.(ABSTRACT TRUNCATED AT 250 WORDS)
                Bookmark

                Author and article information

                Journal
                Endocrinol Metab (Seoul)
                Endocrinol Metab (Seoul)
                ENM
                Endocrinology and Metabolism
                Korean Endocrine Society
                2093-596X
                2093-5978
                March 2016
                16 March 2016
                : 31
                : 1
                : 45-51
                Affiliations
                Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
                Author notes
                Corresponding author: Tae Jung Oh. Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea. Tel: +82-31-787-7078, Fax: +82-31-787-4051, ohtjmd@ 123456gmail.com
                Article
                10.3803/EnM.2016.31.1.45
                4803560
                26996422
                e1c6c54c-b09d-41bd-8672-56fcab7f0aea
                Copyright © 2016 Korean Endocrine Society

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 January 2016
                : 11 February 2016
                : 18 February 2016
                Categories
                Review Article

                incretins,enteroendocrine cells,bariatric surgery
                incretins, enteroendocrine cells, bariatric surgery

                Comments

                Comment on this article