1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Co-delivery of chemotherapeutic drugs and cell cycle regulatory agents using nanocarriers for cancer therapy

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 153

          • Record: found
          • Abstract: found
          • Article: not found

          Cell cycle checkpoints: preventing an identity crisis.

           S Elledge (1996)
          Cell cycle checkpoints are regulatory pathways that control the order and timing of cell cycle transitions and ensure that critical events such as DNA replication and chromosome segregation are completed with high fidelity. In addition, checkpoints respond to damage by arresting the cell cycle to provide time for repair and by inducing transcription of genes that facilitate repair. Checkpoint loss results in genomic instability and has been implicated in the evolution of normal cells into cancer cells. Recent advances have revealed signal transduction pathways that transmit checkpoint signals in response to DNA damage, replication blocks, and spindle damage. Checkpoint pathways have components shared among all eukaryotes, underscoring the conservation of cell cycle regulatory machinery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reactive oxygen species in cancer.

            Elevated rates of reactive oxygen species (ROS) have been detected in almost all cancers, where they promote many aspects of tumour development and progression. However, tumour cells also express increased levels of antioxidant proteins to detoxify from ROS, suggesting that a delicate balance of intracellular ROS levels is required for cancer cell function. Further, the radical generated, the location of its generation, as well as the local concentration is important for the cellular functions of ROS in cancer. A challenge for novel therapeutic strategies will be the fine tuning of intracellular ROS signalling to effectively deprive cells from ROS-induced tumour promoting events, towards tipping the balance to ROS-induced apoptotic signalling. Alternatively, therapeutic antioxidants may prevent early events in tumour development, where ROS are important. However, to effectively target cancer cells specific ROS-sensing signalling pathways that mediate the diverse stress-regulated cellular functions need to be identified. This review discusses the generation of ROS within tumour cells, their detoxification, their cellular effects, as well as the major signalling cascades they utilize, but also provides an outlook on their modulation in therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              5-fluorouracil: mechanisms of action and clinical strategies.

              5-fluorouracil (5-FU) is widely used in the treatment of cancer. Over the past 20 years, increased understanding of the mechanism of action of 5-FU has led to the development of strategies that increase its anticancer activity. Despite these advances, drug resistance remains a significant limitation to the clinical use of 5-FU. Emerging technologies, such as DNA microarray profiling, have the potential to identify novel genes that are involved in mediating resistance to 5-FU. Such target genes might prove to be therapeutically valuable as new targets for chemotherapy, or as predictive biomarkers of response to 5-FU-based chemotherapy.
                Bookmark

                Author and article information

                Journal
                Science China Materials
                Sci. China Mater.
                Springer Science and Business Media LLC
                2095-8226
                2199-4501
                April 27 2021
                Article
                10.1007/s40843-020-1627-4
                © 2021

                Comments

                Comment on this article