5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CD24: a marker of granulosa cell subpopulation and a mediator of ovulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Granulosa cells (GCs) play a critical role in driving the formation of ovarian follicles and building the cumulus-oocyte complex surrounding the ovum. We are particularly interested in assessing oocyte quality by examining the detailed gene expression profiles of human cumulus single cells. Using single-cell RNAseq techniques, we extensively investigated the single-cell transcriptomes of the cumulus GC populations from two women with normal ovarian function. This allowed us to elucidate the endogenous heterogeneity of GCs by uncovering the hidden GC subpopulation. The subsequent validation results suggest that CD24(+) GCs are essential for triggering ovulation. Treatment with human chorionic gonadotropin (hCG) significantly increases the expression of CD24 in GCs. CD24 in cultured human GCs is associated with hCG-induced upregulation of prostaglandin synthase (ARK1C1, PTGS2, PTGES, and PLA2G4A) and prostaglandin transporter (SLCO2A1 and ABCC4) expression, through supporting the EGFR-ERK1/2 pathway. In addition, it was observed that the fraction of CD24(+) cumulus GCs decreases in PCOS patients compared to that of controls. Altogether, the results support the finding that CD24 is an important mediator of ovulation and that it may also be used for therapeutic target of ovulatory disorders.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation.

          Tumor-initiating cells (T-ICs) are a subpopulation of chemoresistant tumor cells that have been shown to cause tumor recurrence upon chemotherapy. Identification of T-ICs and their related pathways are therefore priorities for the development of new therapeutic paradigms. We established chemoresistant hepatocellular carcinoma (HCC) xenograft tumors in immunocompromised mice in which an enriched T-IC population was capable of tumor initiation and self-renewal. With this model, we found CD24 to be upregulated in residual chemoresistant tumors when compared with bulk tumor upon cisplatin treatment. CD24(+) HCC cells were found to be critical for the maintenance, self-renewal, differentiation, and metastasis of tumors and to significantly impact patients' clinical outcome. With a lentiviral-based knockdown approach, CD24 was found to be a functional liver T-IC marker that drives T-IC genesis through STAT3-mediated NANOG regulation. Our findings point to a CD24 cascade in liver T-ICs that may provide an attractive therapeutic target for HCC patients. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Growth differentiation factor-9 is required during early ovarian folliculogenesis.

            Growth factors synthesized by ovarian somatic cells directly affect oocyte growth and function, but it is unclear whether oocyte-secreted factors play a reciprocal role in modulating somatic cell functions in vivo. During the functional analysis of members of the transforming growth factor-beta superfamily in mouse development, we have uncovered a new family member, growth differentiation factor-9 (GDF-9), which is required for ovarian folliculogenesis. GDF-9 messenger RNA is synthesized only in the oocyte from the primary one-layer follicle stage until after ovulation. Here we analyse ovaries from GDF-9-deficient female mice and demonstrate that primordial and primary one-layer follicles can be formed, but there is a block in follicular development beyond the primary one-layer follicle stage which leads to complete infertility. Oocyte growth and zona pellucida formation proceed normally, but other aspects of oocyte differentiation are compromised. Thus, GDF-9 is the first oocyte-derived growth factor required for somatic cell function in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte.

              Mammalian oocytes go through a long and complex developmental process while acquiring the competencies that are required for fertilization and embryogenesis. Recent advances in molecular genetics and quantitative live imaging reveal new insights into the molecular basis of the communication between the oocyte and ovarian somatic cells as well as the dynamic cytoskeleton-based events that drive each step along the pathway to maturity. Whereas self-organization of microtubules and motor proteins direct meiotic spindle assembly for achieving genome reduction, actin filaments are instrumental for spindle positioning and the establishment of oocyte polarity needed for extrusion of polar bodies. Meiotic chromatin provides key instructive signals while being 'chauffeured' by both cytoskeletal systems.
                Bookmark

                Author and article information

                Contributors
                weilin.baylor@gmail.com
                liwen@smmu.edu.cn
                yangfusq1997@smmu.edu.cn
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                17 October 2019
                17 October 2019
                November 2019
                : 10
                : 11
                : 791
                Affiliations
                [1 ]ISNI 0000 0004 0369 1660, GRID grid.73113.37, The Department of Medical Genetics, , Second Military Medical University, ; 200433 Shanghai, China
                [2 ]ISNI 0000 0004 0369 1660, GRID grid.73113.37, The Center of Reproductive Medicine, Shanghai Changzheng Hospital, , Second Military Medical University, ; 200003 Shanghai, China
                [3 ]Translational Genomics Research Institute, Molecular Medicine Division, Phoenix, AZ USA
                [4 ]Hunan Provincial Key Lab of Emergency and Critical Care, Hunan People’s Hospital, Changsha, Hunan China
                [5 ]Shanghai Key Laboratory of Cell Engineering (14DZ2272300), Shanghai, People’s Republic of China
                Article
                1995
                10.1038/s41419-019-1995-1
                6797718
                31624236
                e2c1c2b3-4632-4cf2-8278-51c8a084a3b9
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 15 June 2019
                : 21 August 2019
                : 16 September 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 81873821
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Cell biology
                predictive markers,endocrine reproductive disorders
                Cell biology
                predictive markers, endocrine reproductive disorders

                Comments

                Comment on this article