51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inferring human population size and separation history from multiple genome sequences

      research-article

      1 , 1

      Nature genetics

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The availability of complete human genome sequences from populations across the world has given rise to new population genetic inference methods that explicitly model their ancestral relationship under recombination and mutation. So far, application of these methods to evolutionary history more recent than 20-30 thousand years ago and to population separations has been limited. Here we present a new method that overcomes these shortcomings. The Multiple Sequentially Markovian Coalescent (MSMC) analyses the observed pattern of mutations in multiple individuals, focusing on the first coalescence between any two individuals. Results from applying MSMC to genome sequences from nine populations across the world suggest that the genetic separation of non-African ancestors from African Yoruban ancestors started long before 50,000 years ago, and give information about human population history as recently as 2,000 years ago, including the bottleneck in the peopling of the Americas, and separations within Africa, East Asia and Europe.

          Related collections

          Most cited references 40

          • Record: found
          • Abstract: found
          • Article: not found

          The complete genome sequence of a Neandertal from the Altai Mountains

          We present a high-quality genome sequence of a Neandertal woman from Siberia. We show that her parents were related at the level of half siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neandertal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neandertals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high quality Neandertal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neandertals and Denisovans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estimate of the mutation rate per nucleotide in humans.

            Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii) assess heterogeneity of mutation rate at different sites and for different types of mutations, (iii) test the hypothesis that the X chromosome has a lower mutation rate than autosomes, and (iv) estimate the deleterious mutation rate. Eighteen processed pseudogenes were sequenced, including 12 on autosomes and 6 on the X chromosome. The average mutation rate was estimated to be approximately 2.5 x 10(-8) mutations per nucleotide site or 175 mutations per diploid genome per generation. Rates of mutation for both transitions and transversions at CpG dinucleotides are one order of magnitude higher than mutation rates at other sites. Single nucleotide substitutions are 10 times more frequent than length mutations. Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome. Using conservative calculations of the proportion of the genome subject to purifying selection, we estimate that the genomic deleterious mutation rate (U) is at least 3. This high rate is difficult to reconcile with multiplicative fitness effects of individual mutations and suggests that synergistic epistasis among harmful mutations may be common.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bayesian inference of ancient human demography from individual genome sequences

              Besides their value for biomedicine, individual genome sequences are a rich source of information about human evolution. Here we describe an effort to estimate key evolutionary parameters from sequences for six individuals from diverse human populations. We use a Bayesian, coalescent-based approach to extract information about ancestral population sizes, divergence times, and migration rates from inferred genealogies at many neutrally evolving loci from across the genome. We introduce new methods for accommodating gene flow between populations and integrating over possible phasings of diploid genotypes. We also describe a custom pipeline for genotype inference to mitigate biases from heterogeneous sequencing technologies and coverage levels. Our analysis indicates that the San of Southern Africa diverged from other human populations 108–157 thousand years ago (kya), that Eurasians diverged from an ancestral African population 38–64 kya, and that the effective population size of the ancestors of all modern humans was ~9,000.
                Bookmark

                Author and article information

                Journal
                9216904
                2419
                Nat Genet
                Nat. Genet.
                Nature genetics
                1061-4036
                1546-1718
                12 June 2014
                22 June 2014
                August 2014
                01 February 2015
                : 46
                : 8
                : 919-925
                Affiliations
                [1 ]Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridge, United Kingdom
                Author notes
                Correspondence should be addressed to: S.S. ( stephan.schiffels@ 123456sanger.ac.uk ) or R.D. ( rd@ 123456sanger.ac.uk )

                Author Contributions: R.D. proposed the basic strategy and designed the overall study. S.S. developed the theory, implemented the algorithm and obtained results. S.S. and R.D. analyzed the results and wrote the manuscript.

                Article
                EMS58900
                10.1038/ng.3015
                4116295
                24952747
                Categories
                Article

                Genetics

                Comments

                Comment on this article