Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review of and Roadmap for Data Science and Machine Learning for the Neuropsychiatric Phenotype of Autism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autism spectrum disorder (autism) is a neurodevelopmental delay that affects at least 1 in 44 children. Like many neurological disorder phenotypes, the diagnostic features are observable, can be tracked over time, and can be managed or even eliminated through proper therapy and treatments. However, there are major bottlenecks in the diagnostic, therapeutic, and longitudinal tracking pipelines for autism and related neurodevelopmental delays, creating an opportunity for novel data science solutions to augment and transform existing workflows and provide increased access to services for affected families. Several efforts previously conducted by a multitude of research labs have spawned great progress toward improved digital diagnostics and digital therapies for children with autism. We review the literature on digital health methods for autism behavior quantification and beneficial therapies using data science. We describe both case–control studies and classification systems for digital phenotyping. We then discuss digital diagnostics and therapeutics that integrate machine learning models of autism-related behaviors, including the factors that must be addressed for translational use. Finally, we describe ongoing challenges and potential opportunities for the field of autism data science. Given the heterogeneous nature of autism and the complexities of the relevant behaviors, this review contains insights that are relevant to neurological behavior analysis and digital psychiatry more broadly.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          Machine learning: Trends, perspectives, and prospects.

          Machine learning addresses the question of how to build computers that improve automatically through experience. It is one of today's most rapidly growing technical fields, lying at the intersection of computer science and statistics, and at the core of artificial intelligence and data science. Recent progress in machine learning has been driven both by the development of new learning algorithms and theory and by the ongoing explosion in the availability of online data and low-cost computation. The adoption of data-intensive machine-learning methods can be found throughout science, technology and commerce, leading to more evidence-based decision-making across many walks of life, including health care, manufacturing, education, financial modeling, policing, and marketing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample

            Journal of Autism and Developmental Disorders, 30(3), 205-223
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2018

              Problem/Condition Autism spectrum disorder (ASD). Period Covered 2018. Description of System The Autism and Developmental Disabilities Monitoring (ADDM) Network conducts active surveillance of ASD. This report focuses on the prevalence and characteristics of ASD among children aged 8 years in 2018 whose parents or guardians lived in 11 ADDM Network sites in the United States (Arizona, Arkansas, California, Georgia, Maryland, Minnesota, Missouri, New Jersey, Tennessee, Utah, and Wisconsin). To ascertain ASD among children aged 8 years, ADDM Network staff review and abstract developmental evaluations and records from community medical and educational service providers. In 2018, children met the case definition if their records documented 1) an ASD diagnostic statement in an evaluation (diagnosis), 2) a special education classification of ASD (eligibility), or 3) an ASD International Classification of Diseases (ICD) code. Results For 2018, across all 11 ADDM sites, ASD prevalence per 1,000 children aged 8 years ranged from 16.5 in Missouri to 38.9 in California. The overall ASD prevalence was 23.0 per 1,000 (one in 44) children aged 8 years, and ASD was 4.2 times as prevalent among boys as among girls. Overall ASD prevalence was similar across racial and ethnic groups, except American Indian/Alaska Native children had higher ASD prevalence than non-Hispanic White (White) children (29.0 versus 21.2 per 1,000 children aged 8 years). At multiple sites, Hispanic children had lower ASD prevalence than White children (Arizona, Arkansas, Georgia, and Utah), and non-Hispanic Black (Black) children (Georgia and Minnesota). The associations between ASD prevalence and neighborhood-level median household income varied by site. Among the 5,058 children who met the ASD case definition, 75.8% had a diagnostic statement of ASD in an evaluation, 18.8% had an ASD special education classification or eligibility and no ASD diagnostic statement, and 5.4% had an ASD ICD code only. ASD prevalence per 1,000 children aged 8 years that was based exclusively on documented ASD diagnostic statements was 17.4 overall (range: 11.2 in Maryland to 29.9 in California). The median age of earliest known ASD diagnosis ranged from 36 months in California to 63 months in Minnesota. Among the 3,007 children with ASD and data on cognitive ability, 35.2% were classified as having an intelligence quotient (IQ) score ≤70. The percentages of children with ASD with IQ scores ≤70 were 49.8%, 33.1%, and 29.7% among Black, Hispanic, and White children, respectively. Overall, children with ASD and IQ scores ≤70 had earlier median ages of ASD diagnosis than children with ASD and IQ scores >70 (44 versus 53 months). Interpretation In 2018, one in 44 children aged 8 years was estimated to have ASD, and prevalence and median age of identification varied widely across sites. Whereas overall ASD prevalence was similar by race and ethnicity, at certain sites Hispanic children were less likely to be identified as having ASD than White or Black children. The higher proportion of Black children compared with White and Hispanic children classified as having intellectual disability was consistent with previous findings. Public Health Action The variability in ASD prevalence and community ASD identification practices among children with different racial, ethnic, and geographical characteristics highlights the importance of research into the causes of that variability and strategies to provide equitable access to developmental evaluations and services. These findings also underscore the need for enhanced infrastructure for diagnostic, treatment, and support services to meet the needs of all children.
                Bookmark

                Author and article information

                Journal
                101714020
                48523
                Annu Rev Biomed Data Sci
                Annu Rev Biomed Data Sci
                Annual review of biomedical data science
                2574-3414
                9 May 2024
                10 August 2023
                03 May 2023
                14 May 2024
                : 6
                : 211-228
                Affiliations
                [1 ]Department of Information and Computer Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi, USA
                [2 ]Departments of Pediatrics (Systems Medicine), Biomedical Data Science, and Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
                Author notes
                Article
                NIHMS1989632
                10.1146/annurev-biodatasci-020722-125454
                11093217
                37137169
                e3b7763f-d78e-40ae-a09e-9d532d16656a

                This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See credit lines of images or other third-party material in this article for license information.

                History
                Categories
                Article

                autism,digital phenotyping,machine learning,crowdsourcing,digital health,digital psychiatry

                Comments

                Comment on this article