85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mistimed sleep disrupts circadian regulation of the human transcriptome.

      Proceedings of the National Academy of Sciences of the United States of America
      Adult, Circadian Rhythm, Female, Gene Expression, Humans, Male, Melatonin, physiology, RNA, Messenger, genetics, Sleep, Transcriptome, Young Adult

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Circadian organization of the mammalian transcriptome is achieved by rhythmic recruitment of key modifiers of chromatin structure and transcriptional and translational processes. These rhythmic processes, together with posttranslational modification, constitute circadian oscillators in the brain and peripheral tissues, which drive rhythms in physiology and behavior, including the sleep-wake cycle. In humans, sleep is normally timed to occur during the biological night, when body temperature is low and melatonin is synthesized. Desynchrony of sleep-wake timing and other circadian rhythms, such as occurs in shift work and jet lag, is associated with disruption of rhythmicity in physiology and endocrinology. However, to what extent mistimed sleep affects the molecular regulators of circadian rhythmicity remains to be established. Here, we show that mistimed sleep leads to a reduction of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 1.0% during forced desynchrony of sleep and centrally driven circadian rhythms. Transcripts affected are key regulators of gene expression, including those associated with chromatin modification (methylases and acetylases), transcription (RNA polymerase II), translation (ribosomal proteins, initiation, and elongation factors), temperature-regulated transcription (cold inducible RNA-binding proteins), and core clock genes including CLOCK and ARNTL (BMAL1). We also estimated the separate contribution of sleep and circadian rhythmicity and found that the sleep-wake cycle coordinates the timing of transcription and translation in particular. The data show that mistimed sleep affects molecular processes at the core of circadian rhythm generation and imply that appropriate timing of sleep contributes significantly to the overall temporal organization of the human transcriptome.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptional architecture and chromatin landscape of the core circadian clock in mammals.

          The mammalian circadian clock involves a transcriptional feed back loop in which CLOCK and BMAL1 activate the Period and Cryptochrome genes, which then feedback and repress their own transcription. We have interrogated the transcriptional architecture of the circadian transcriptional regulatory loop on a genome scale in mouse liver and find a stereotyped, time-dependent pattern of transcription factor binding, RNA polymerase II (RNAPII) recruitment, RNA expression, and chromatin states. We find that the circadian transcriptional cycle of the clock consists of three distinct phases: a poised state, a coordinated de novo transcriptional activation state, and a repressed state. Only 22% of messenger RNA (mRNA) cycling genes are driven by de novo transcription, suggesting that both transcriptional and posttranscriptional mechanisms underlie the mammalian circadian clock. We also find that circadian modulation of RNAPII recruitment and chromatin remodeling occurs on a genome-wide scale far greater than that seen previously by gene expression profiling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Genome-Wide and Phase-Specific DNA-Binding Rhythms of BMAL1 Control Circadian Output Functions in Mouse Liver

            Introduction Circadian clocks provide higher organisms with cell-autonomous and organ-based metronomes that control temporally gated and tissue-specific gene expression or metabolic programs [1]–[4]. In the liver, such programs have been implicated in detoxification [5], glucose homeostasis [6],[7], cholesterol biosynthesis [8],[9], and gating of the cell cycle [10],[11]. The mammalian clock depends on a cell-autonomous [11] core oscillator that is built around interlocked transcriptional feedback loops. These use a variety of transcriptional regulators: the basic helix-loop-helix (bHLH) PAS domain proteins CLOCK, NPAS2, and BMAL1 [12],[13], orphan nuclear receptors of the REV-ERB [14] and ROR families [15], and the DEC bHLH repressors [16]. In addition, important co-regulators such as PER and CRY proteins mediate negative feedback by repressing their own transcriptional activators, BMAL1/CLOCK [17]–[20]. Among all these regulators, the Bmal1 gene is the only single gene in the circadian network whose knockout results in arrhythmicity [21],[22]. BMAL1 functions as a heterodimeric complex, BMAL1/CLOCK, that activates transcription of its targets via E-boxes [12],[23],[24]. The DNA-binding activity of BMAL1/CLOCK is thought to cycle because of circadian changes in post-translational modifications [25],[26]. The core oscillator exerts its function by controlling temporally gated outputs, notably metabolic functions [5],[7],[27]. Transcriptional regulation of circadian output is known to occur both directly via the core clock transcription factors and indirectly, as, for example, via the PAR-bZip regulators DBP/TEF/HLF, which are themselves controlled by BMAL1/CLOCK [28]. Thus, circadian output function is controlled via a hierarchical network of transcription regulators that drives vast programs of tissue-specific gene expression both in the suprachiasmatic nucleus [29] and in peripheral tissues [29]–[34] in the mouse. Notably, these transcript rhythms cover the full range of expression phases, which thus begs the question about the mechanism behind phase-specific circadian gene expression. It has been proposed that virtually any peak expression phase can be achieved by suitably tuned regulatory sequences that integrate a small number of phase-specific core regulators [35]. Here we investigate the degree to which BMAL1 recruitment to the genomic DNA is itself rhythmic and to what extent peak binding carries phase information for downstream circadian mRNA expression. To address these questions and further dissect the hierarchical structure of circadian clock networks, we perform a time series chromatin immunoprecipitation (ChIP) analysis for the master clock regulator BMAL1 in mouse liver. This allows us to identify a comprehensive set of direct BMAL1 targets in a circadianly controlled tissue, to model the DNA-binding specificity of BMAL1 in vivo, and to determine how tightly the phase of mRNA output follows rhythmic protein-DNA interactions. Our results reveal the pervasiveness of circadian protein-DNA interactions in a mammalian tissue by showing widespread rhythmic and phase-specific binding of BMAL1 to coding and non-coding genes. This enables us to characterize the cooperative interactions of BMAL1/CLOCK complexes at tandem E-box elements (E1-E2), and to emphasize the complexity of circadian phase control that involves transcriptional and post-transcriptional mechanisms. Results BMAL1 Binds Rhythmically to Thousands of Genomic Regions in Mouse Liver To obtain a time-resolved and genome-wide map of BMAL1 target sites, we performed ChIP in mouse liver at 4-h time intervals during one light-dark cycle. Following initial testing of ChIP efficiency by quantitative PCR (qPCR) (Figure S1), two independent BMAL1 ChIP time courses were subjected to ultra-high-throughput sequencing to yield about 20 million tags per time point (Table S1) and were analyzed via a bioinformatics pipeline that combines existing and novel methods. Briefly, we used the MACS software [36] to detect regions with enriched BMAL1 binding compared to an input chromatin sample (see Materials and Methods). To efficiently reject spurious signals and accurately estimate the location of binding sites, we developed a model-based deconvolution method for ChIP combined with deep sequencing (ChIP-Seq) data (see Text S1). We identified 2,049 bona fide BMAL1 binding sites in mouse liver. Among the top 200 sites, more than 90% are significantly rhythmic (Fisher test, p 0.2) are colored. (B) BMAL1 targets in the insulin signaling pathway. (C) BMAL1 targets in the Pparα signaling pathway. These graphs were generated using KEGG Mapper (http://www.genome.jp/kegg/tool/color_pathway.html). (1.31 MB PDF) Click here for additional data file. Figure S6 Weight matrix and structure of the HMM used for sequence analysis. (A) Logo of the E-box PSWM used for autocorrelation analysis. At each position of the PSWM, the most probable letter has p = 0.96875, while the others have p = 0.03125. (B) Structure of the HMM. E1 and E2 model, respectively, the collection of hidden states of the first and second E-box. M states allow for filtering of spurious signal, namely GTGT repeats. B1 and SP represent, respectively, background and spacer states. For simplicity, the reverse complement of the HMM is not shown here. (0.35 MB PDF) Click here for additional data file. Figure S7 Pre-mRNA and mRNA measurements of longer lived transcripts. (A) mRNA transcript stability may explain lag and relative amplitude between pre-mRNA and mRNA accumulation in the Gys2, March8, and Qdpr transcripts. Experiments were performed as described in Figure 7A–7C. Approximate half-lives for March8 and Qdpr are 5.4 h and >10 h, while that for Gys2 is not available (see [B]). (B) mRNA half-lives from mouse embryonic stem cells [61] and mouse fibroblasts [62] for the genes in Figure 7A–7C and (A). When several measurements from the same cell line were available, we took the mean. (0.51 MB PDF) Click here for additional data file. Figure S8 The anti-BMAL1 antibody recognizes specifically BMAL1. Ponceau staining (A) and Western blot (B and C) of nuclear extracts (15 ug) from wild-type and Bmal1 −/− mouse liver at ZT6. The nuclear extracts were electrophoresed on a 12% SDS-PAGE gel, transferred onto a nitrocellulose membrane, and detected using anti-POLII Cter (ab817-100, Abcam) (B) and anti-BMAL1 antibodies (C). The sequence of the peptide used for the immunization is located at the C-terminal of the mouse BMAL1 protein: LEADAGLGGPVDFSDLPWPL. (3.48 MB PDF) Click here for additional data file. Table S1 Sequencing data: number of sequenced and non-redundant tags at each time point. (0.05 MB PDF) Click here for additional data file. Table S2 Functional annotation clustering of putative BMAL1 targets using DAVID tools. These annotations link the sites to the closest gene irrespective of the distance. In total, 1,551 out of 2,049 sites have a functional annotation. For details regarding the positions and binding strength of these sites, see Text S2. For the small clusters, we list the gene symbols in the most significant subcategory. (0.12 MB PDF) Click here for additional data file. Table S3 Putative BMAL1 targets with transcription factor activity (DAVID, GO:003700). Additional columns include the rank of BMAL1 binding strength, the p-value for cyclic mRNA expression (data as in Figure 6; significant values, p<0.05, are in bold), and phase of mRNA expression. For the nuclear receptors, we also indicate results for mRNA expression patterns by real-time PCR in mouse liver [27]. According to those analyses, all 18 bound receptors are expressed and 9/18 show circadian accumulation. (0.12 MB PDF) Click here for additional data file. Table S4 Enriched KEGG pathways identified with DAVID (p<0.05). The BMAL1 putative targets in the three most significant pathways are shown in Figure S5. (0.23 MB PDF) Click here for additional data file. Table S5 PSWM for the E1-E2 motif. E1 goes from position 1 to 13, position 14 corresponds to the spacer, and E2 goes from position 15 to 27. (0.05 MB PDF) Click here for additional data file. Table S6 TaqMan probes for ChIP-PCR measurements. (0.04 MB PDF) Click here for additional data file. Table S7 TaqMan probes for mRNA measurements. (0.05 MB PDF) Click here for additional data file. Table S8 Annealing primers for EMSA. (0.04 MB PDF) Click here for additional data file. Table S9 Annealing primers for transactivation assays. (0.05 MB PDF) Click here for additional data file. Text S1 Supplementary methods. (0.09 MB PDF) Click here for additional data file. Text S2 List of all BMAL1 sites with annotations and binding strength at each time point. (0.20 MB TXT) Click here for additional data file. Text S3 List of BMAL1 sites near RCGs. (0.01 MB TXT) Click here for additional data file.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rhythmic histone acetylation underlies transcription in the mammalian circadian clock.

              In the mouse circadian clock, a transcriptional feedback loop is at the centre of the clockwork mechanism. Clock and Bmal1 are essential transcription factors that drive the expression of three period genes (Per1-3) and two cryptochrome genes (Cry1 and Cry2). The Cry proteins feedback to inhibit Clock/Bmal1-mediated transcription by a mechanism that does not alter Clock/Bmal1 binding to DNA. Here we show that transcriptional regulation of the core clock mechanism in mouse liver is accompanied by rhythms in H3 histone acetylation, and that H3 acetylation is a potential target of the inhibitory action of Cry. The promoter regions of the Per1, Per2 and Cry1 genes exhibit circadian rhythms in H3 acetylation and RNA polymerase II binding that are synchronous with the corresponding steady-state messenger RNA rhythms. The histone acetyltransferase p300 precipitates together with Clock in vivo in a time-dependent manner. Moreover, the Cry proteins inhibit a p300-induced increase in Clock/Bmal1-mediated transcription. The delayed timing of the Cry1 mRNA rhythm, relative to the Per rhythms, is due to the coordinated activities of Rev-Erbalpha and Clock/Bmal1, and defines a new mechanism for circadian phase control.
                Bookmark

                Author and article information

                Journal
                24449876
                3926083
                10.1073/pnas.1316335111

                Chemistry
                Adult,Circadian Rhythm,Female,Gene Expression,Humans,Male,Melatonin,physiology,RNA, Messenger,genetics,Sleep,Transcriptome,Young Adult

                Comments

                Comment on this article