77
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Dynamics of Incomplete Lineage Sorting across the Ancient Adaptive Radiation of Neoavian Birds

      research-article
      * , ,
      PLoS Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The diversification of neoavian birds is one of the most rapid adaptive radiations of extant organisms. Recent whole-genome sequence analyses have much improved the resolution of the neoavian radiation and suggest concurrence with the Cretaceous-Paleogene (K-Pg) boundary, yet the causes of the remaining genome-level irresolvabilities appear unclear. Here we show that genome-level analyses of 2,118 retrotransposon presence/absence markers converge at a largely consistent Neoaves phylogeny and detect a highly differential temporal prevalence of incomplete lineage sorting (ILS), i.e., the persistence of ancestral genetic variation as polymorphisms during speciation events. We found that ILS-derived incongruences are spread over the genome and involve 35% and 34% of the analyzed loci on the autosomes and the Z chromosome, respectively. Surprisingly, Neoaves diversification comprises three adaptive radiations, an initial near-K-Pg super-radiation with highly discordant phylogenetic signals from near-simultaneous speciation events, followed by two post-K-Pg radiations of core landbirds and core waterbirds with much less pronounced ILS. We provide evidence that, given the extreme level of up to 100% ILS per branch in super-radiations, particularly rapid speciation events may neither resemble a fully bifurcating tree nor are they resolvable as such. As a consequence, their complex demographic history is more accurately represented as local networks within a species tree.

          Abstract

          A study of ancient genetic variation reveals genomic evidence for near-simultaneous speciation at the base of Neoaves (a group containing most modern birds), which temporally coincides with the mass extinction of nonavian dinosaurs and archaic birds.

          Author Summary

          The rise of modern birds began after the mass extinction of nonavian dinosaurs and archaic birds at the Cretaceous-Paleogene (K-Pg) boundary, about 66 million years ago. This coincides with the super-rapid adaptive radiation of Neoaves (a group that contains most modern birds), which has been difficult to resolve even with whole genome sequences. We reconstructed the genealogical fates of thousands of rare genomic changes (insertions of selfish mobile elements called retrotransposons), a third of which were found to be affected by a phenomenon known as incomplete lineage sorting (ILS), namely a persistence of polymorphisms across multiple successive speciation events. Astoundingly, we found that near the K-Pg boundary, speciation events were accompanied by extreme levels of ILS, suggesting a near-simultaneous, star-like diversification process that appears plausible in the context of instantaneous niche availability that must have followed the K-Pg mass extinction. Our genome-scale results provide a population genomic explanation as to why some species radiations may be more complex than a fully bifurcating tree of life. We suggest that, under such circumstances, ILS bears witness to the biological limitation of phylogenetic resolution.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The placental mammal ancestor and the post-K-Pg radiation of placentals.

          To discover interordinal relationships of living and fossil placental mammals and the time of origin of placentals relative to the Cretaceous-Paleogene (K-Pg) boundary, we scored 4541 phenomic characters de novo for 86 fossil and living species. Combining these data with molecular sequences, we obtained a phylogenetic tree that, when calibrated with fossils, shows that crown clade Placentalia and placental orders originated after the K-Pg boundary. Many nodes discovered using molecular data are upheld, but phenomic signals overturn molecular signals to show Sundatheria (Dermoptera + Scandentia) as the sister taxon of Primates, a close link between Proboscidea (elephants) and Sirenia (sea cows), and the monophyly of echolocating Chiroptera (bats). Our tree suggests that Placentalia first split into Xenarthra and Epitheria; extinct New World species are the oldest members of Afrotheria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates.

            The uneven distribution of species richness is a fundamental and unexplained pattern of vertebrate biodiversity. Although species richness in groups like mammals, birds, or teleost fishes is often attributed to accelerated cladogenesis, we lack a quantitative conceptual framework for identifying and comparing the exceptional changes of tempo in vertebrate evolutionary history. We develop MEDUSA, a stepwise approach based upon the Akaike information criterion for detecting multiple shifts in birth and death rates on an incompletely resolved phylogeny. We apply MEDUSA incompletely to a diversity tree summarizing both evolutionary relationships and species richness of 44 major clades of jawed vertebrates. We identify 9 major changes in the tempo of gnathostome diversification; the most significant of these lies at the base of a clade that includes most of the coral-reef associated fishes as well as cichlids and perches. Rate increases also underlie several well recognized tetrapod radiations, including most modern birds, lizards and snakes, ostariophysan fishes, and most eutherian mammals. In addition, we find that large sections of the vertebrate tree exhibit nearly equal rates of origination and extinction, providing some of the first evidence from molecular data for the importance of faunal turnover in shaping biodiversity. Together, these results reveal living vertebrate biodiversity to be the product of volatile turnover punctuated by 6 accelerations responsible for >85% of all species as well as 3 slowdowns that have produced "living fossils." In addition, by revealing the timing of the exceptional pulses of vertebrate diversification as well as the clades that experience them, our diversity tree provides a framework for evaluating particular causal hypotheses of vertebrate radiations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insights into hominid evolution from the gorilla genome sequence

              Summary Gorillas are humans’ closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago (Mya). In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, CA USA )
                1544-9173
                1545-7885
                18 August 2015
                August 2015
                : 13
                : 8
                : e1002224
                Affiliations
                [001]Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
                Massey University, NEW ZEALAND
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AS HE. Performed the experiments: AS LS. Analyzed the data: AS. Contributed reagents/materials/analysis tools: HE. Wrote the paper: AS HE.

                Article
                PBIOLOGY-D-15-00358
                10.1371/journal.pbio.1002224
                4540587
                26284513
                e4d408d8-4f8b-408f-8a5a-083a29ae3d33
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 2 February 2015
                : 10 July 2015
                Page count
                Figures: 6, Tables: 0, Pages: 18
                Funding
                This work was supported by an Advanced Investigator Grant (NEXTGENMOLECOL) from the European Research Council, a Wallenberg Scholar Award from the Knut and Alice Wallenberg Foundation and grants from the Swedish Research Council (2007-8731 and 2010-5650) to HE. Computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) under Project b2012135. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Life sciences
                Life sciences

                Comments

                Comment on this article