22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PREP-Mt: predictive RNA editor for plant mitochondrial genes

      product-review
      1 ,
      BMC Bioinformatics
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In plants, RNA editing is a process that converts specific cytidines to uridines and uridines to cytidines in transcripts from virtually all mitochondrial protein-coding genes. There are thousands of plant mitochondrial genes in the sequence databases, but sites of RNA editing have not been determined for most. Accurate methods of RNA editing site prediction will be important in filling in this information gap and could reduce or even eliminate the need for experimental determination of editing sites for many sequences. Because RNA editing tends to increase protein conservation across species by "correcting" codons that specify unconserved amino acids, this principle can be used to predict editing sites by identifying positions where an RNA editing event would increase the conservation of a protein to homologues from other plants. PREP-Mt takes this approach to predict editing sites for any protein-coding gene in plant mitochondria.

          Results

          To test the general applicability of the PREP-Mt methodology, RNA editing sites were predicted for 370 full-length or nearly full-length DNA sequences and then compared to the known sites of RNA editing for these sequences. Of 60,263 cytidines in this test set, PREP-Mt correctly classified 58,994 as either an edited or unedited site (accuracy = 97.9%). PREP-Mt properly identified 3,038 of the 3,698 known sites of RNA editing (sensitivity = 82.2%) and 55,956 of the 56,565 known unedited sites (specificity = 98.9%). Accuracy and sensitivity increased to 98.7% and 94.7%, respectively, after excluding the 489 silent editing sites (which have no effect on protein sequence or function) from the test set.

          Conclusion

          These results indicate that PREP-Mt is effective at identifying C to U RNA editing sites in plant mitochondrial protein-coding genes. Thus, PREP-Mt should be useful in predicting protein sequences for use in molecular, biochemical, and phylogenetic analyses. In addition, PREP-Mt could be used to determine functionality of a mitochondrial gene or to identify particular sequences with unusual editing properties. The PREP-Mt methodology should be applicable to any system where RNA editing increases protein conservation across species.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs.

          Comparison of plant mitochondrial (mt), chloroplast (cp) and nuclear (n) DNA sequences shows that the silent substitution rate in mtDNA is less than one-third that in cpDNA, which in turn evolves only half as fast as plant nDNA. The slower rate in mtDNA than in cpDNA is probably due to a lower mutation rate. Silent substitution rates in plant and mammalian mtDNAs differ by one or two orders of magnitude, whereas the rates in nDNAs may be similar. In cpDNA, the rate of substitution both at synonymous sites and in noncoding sequences in the inverted repeat is greatly reduced in comparison to single-copy sequences. The rate of cpDNA evolution appears to have slowed in some dicot lineages following the monocot/dicot split, and the slowdown is more conspicuous at nonsynonymous sites than at synonymous sites.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA.

            The mitochondrial cytochrome oxidase (cox) subunit II gene from trypanosomes contains a frameshift at amino acid 170. This gene is highly conserved in different trypanosome species, suggesting that it is functional. Sequence determination of coxII transcripts of T. brucei and C. fasciculata reveals four extra, reading frame-restoring nucleotides at the frameshift position that are not encoded in the DNA. Southern blot analysis of DNA of both trypanosome species failed to show the existence of a second version of the coxII gene. We conclude, therefore, that the extra nucleotides are added during or after transcription of the frameshift gene by an RNA-editing process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants.

              The entire mitochondrial genome of rice (Oryza sativa L.), a monocot plant, has been sequenced. It was found to comprise 490,520 bp, with an average G+C content of 43.8%. Three rRNA genes, 17 tRNA genes and five pseudo tRNA sequences were identified. In addition, eleven ribosomal protein genes and two pseudo ribosomal protein genes were found, which are homologous to 13 of the 16 genes for ribosomal proteins in the mitochondrial genome of the liverwort (Marchantia polymorpha). A greater degree of variation in terms of presence/absence and integrity of genes was observed among the ribosomal protein genes and tRNA genes of rice, Arabidopsis and sugar beet. Transcription and post-transcriptional modification (RNA editing) in the rice mitochondrial sequence were also examined. In all, 491 Cs in the genomic DNA were converted to Ts in cDNA. The frequency of RNA editing differed markedly depending upon the ORF considered. Sequences derived from plastid and nuclear genomes make up 6.3% and 13.4% of the mitochondrial genome, respectively. The degree of conservation of plastid sequences in the mitochondrial genome ranged from 61% to 100%, suggesting that sequence migration has occurred very frequently. Three plastid DNA fragments that were incorporated into the mitochondrial genome were subsequently transferred to the nuclear genome. Nineteen fragments that were similar to transposon or retrotransposon sequences, but different from those found in the mitochondrial genomes of dicots, were identified. The results indicate frequent and independent DNA sequence flow to and from the mitochondrial genome during the evolution of flowering plants, and this may account for the range of genetic variation observed between the mitochondrial genomes of higher plants.
                Bookmark

                Author and article information

                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central (London )
                1471-2105
                2005
                12 April 2005
                : 6
                : 96
                Affiliations
                [1 ]Department of Biology, Indiana University, Bloomington, IN, 47405, USA
                Article
                1471-2105-6-96
                10.1186/1471-2105-6-96
                1087475
                15826309
                e4de8c2a-0e6a-48f2-824f-be19bc1e1d28
                Copyright © 2005 Mower; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 February 2005
                : 12 April 2005
                Categories
                Software

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article