14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neuroimmunology of Huntington's Disease: Revisiting Evidence from Human Studies

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Huntington's disease (HD) is a neurodegenerative disorder characterized by selective loss of neurons in the striatum and cortex, which leads to progressive motor dysfunction, cognitive decline, and psychiatric disorders. Although the cause of HD is well described—HD is a genetic disorder caused by a trinucleotide (CAG) repeat expansion in the gene encoding for huntingtin ( HTT) on chromosome 4p16.3—the ultimate cause of neuronal death is still uncertain. Apart from impairment in systems for handling abnormal proteins, other metabolic pathways and mechanisms might contribute to neurodegeneration and progression of HD. Among these, inflammation seems to play a role in HD pathogenesis. The current review summarizes the available evidence about immune and/or inflammatory changes in HD. HD is associated with increased inflammatory mediators in both the central nervous system and periphery. Accordingly, there have been some attempts to slow HD progression targeting the immune system.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Minocycline: far beyond an antibiotic.

          Minocycline is a second-generation, semi-synthetic tetracycline that has been in therapeutic use for over 30 years because of its antibiotic properties against both gram-positive and gram-negative bacteria. It is mainly used in the treatment of acne vulgaris and some sexually transmitted diseases. Recently, it has been reported that tetracyclines can exert a variety of biological actions that are independent of their anti-microbial activity, including anti-inflammatory and anti-apoptotic activities, and inhibition of proteolysis, angiogenesis and tumour metastasis. These findings specifically concern to minocycline as it has recently been found to have multiple non-antibiotic biological effects that are beneficial in experimental models of various diseases with an inflammatory basis, including dermatitis, periodontitis, atherosclerosis and autoimmune disorders such as rheumatoid arthritis and inflammatory bowel disease. Of note, minocycline has also emerged as the most effective tetracycline derivative at providing neuroprotection. This effect has been confirmed in experimental models of ischaemia, traumatic brain injury and neuropathic pain, and of several neurodegenerative conditions including Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Alzheimer's disease, multiple sclerosis and spinal cord injury. Moreover, other pre-clinical studies have shown its ability to inhibit malignant cell growth and activation and replication of human immunodeficiency virus, and to prevent bone resorption. Considering the above-mentioned findings, this review will cover the most important topics in the pharmacology of minocycline to date, supporting its evaluation as a new therapeutic approach for many of the diseases described herein. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: report of the Guideline Development Subcommittee of the American Academy of Neurology.

            To determine the efficacy of medical marijuana in several neurologic conditions. We performed a systematic review of medical marijuana (1948-November 2013) to address treatment of symptoms of multiple sclerosis (MS), epilepsy, and movement disorders. We graded the studies according to the American Academy of Neurology classification scheme for therapeutic articles. Thirty-four studies met inclusion criteria; 8 were rated as Class I. The following were studied in patients with MS: (1) Spasticity: oral cannabis extract (OCE) is effective, and nabiximols and tetrahydrocannabinol (THC) are probably effective, for reducing patient-centered measures; it is possible both OCE and THC are effective for reducing both patient-centered and objective measures at 1 year. (2) Central pain or painful spasms (including spasticity-related pain, excluding neuropathic pain): OCE is effective; THC and nabiximols are probably effective. (3) Urinary dysfunction: nabiximols is probably effective for reducing bladder voids/day; THC and OCE are probably ineffective for reducing bladder complaints. (4) Tremor: THC and OCE are probably ineffective; nabiximols is possibly ineffective. (5) Other neurologic conditions: OCE is probably ineffective for treating levodopa-induced dyskinesias in patients with Parkinson disease. Oral cannabinoids are of unknown efficacy in non-chorea-related symptoms of Huntington disease, Tourette syndrome, cervical dystonia, and epilepsy. The risks and benefits of medical marijuana should be weighed carefully. Risk of serious adverse psychopathologic effects was nearly 1%. Comparative effectiveness of medical marijuana vs other therapies is unknown for these indications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The IGF-1/Akt pathway is neuroprotective in Huntington's disease and involves Huntingtin phosphorylation by Akt.

              In the search for neuroprotective factors in Huntington's disease, we found that insulin growth factor 1 via activation of the serine/threonine kinase Akt/PKB is able to inhibit neuronal death specifically induced by mutant huntingtin containing an expanded polyglutamine stretch. The IGF-1/Akt pathway has a dual effect on huntingtin-induced toxicity, since activation of this pathway also results in a decrease in the formation of intranuclear inclusions of mutant huntingtin. We demonstrate that huntingtin is a substrate of Akt and that phosphorylation of huntingtin by Akt is crucial to mediate the neuroprotective effects of IGF-1. Finally, we show that Akt is altered in Huntington's disease patients. Taken together, these results support a potential role of the Akt pathway in Huntington's disease.
                Bookmark

                Author and article information

                Journal
                Mediators Inflamm
                Mediators Inflamm
                MI
                Mediators of Inflammation
                Hindawi Publishing Corporation
                0962-9351
                1466-1861
                2016
                8 August 2016
                : 2016
                : 8653132
                Affiliations
                1Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
                2Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
                3Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
                Author notes

                Academic Editor: Julio Galvez

                Author information
                http://orcid.org/0000-0003-2616-8082
                http://orcid.org/0000-0002-9621-5422
                Article
                10.1155/2016/8653132
                4992798
                27578922
                e5469f1a-2ab6-430e-8726-47be1deacd76
                Copyright © 2016 Natalia P. Rocha et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 May 2016
                : 12 July 2016
                Categories
                Review Article

                Immunology
                Immunology

                Comments

                Comment on this article