53
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A survey about methods dedicated to epistasis detection

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During the past decade, findings of genome-wide association studies (GWAS) improved our knowledge and understanding of disease genetics. To date, thousands of SNPs have been associated with diseases and other complex traits. Statistical analysis typically looks for association between a phenotype and a SNP taken individually via single-locus tests. However, geneticists admit this is an oversimplified approach to tackle the complexity of underlying biological mechanisms. Interaction between SNPs, namely epistasis, must be considered. Unfortunately, epistasis detection gives rise to analytic challenges since analyzing every SNP combination is at present impractical at a genome-wide scale. In this review, we will present the main strategies recently proposed to detect epistatic interactions, along with their operating principle. Some of these methods are exhaustive, such as multifactor dimensionality reduction, likelihood ratio-based tests or receiver operating characteristic curve analysis; some are non-exhaustive, such as machine learning techniques (random forests, Bayesian networks) or combinatorial optimization approaches (ant colony optimization, computational evolution system).

          Related collections

          Most cited references84

          • Record: found
          • Abstract: not found
          • Book: not found

          Categorical Data Analysis

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The IntAct molecular interaction database in 2012

            IntAct is an open-source, open data molecular interaction database populated by data either curated from the literature or from direct data depositions. Two levels of curation are now available within the database, with both IMEx-level annotation and less detailed MIMIx-compatible entries currently supported. As from September 2011, IntAct contains approximately 275 000 curated binary interaction evidences from over 5000 publications. The IntAct website has been improved to enhance the search process and in particular the graphical display of the results. New data download formats are also available, which will facilitate the inclusion of IntAct's data in the Semantic Web. IntAct is an active contributor to the IMEx consortium (http://www.imexconsortium.org). IntAct source code and data are freely available at http://www.ebi.ac.uk/intact.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epistasis and quantitative traits: using model organisms to study gene-gene interactions.

              The role of epistasis in the genetic architecture of quantitative traits is controversial, despite the biological plausibility that nonlinear molecular interactions underpin the genotype-phenotype map. This controversy arises because most genetic variation for quantitative traits is additive. However, additive variance is consistent with pervasive epistasis. In this Review, I discuss experimental designs to detect the contribution of epistasis to quantitative trait phenotypes in model organisms. These studies indicate that epistasis is common, and that additivity can be an emergent property of underlying genetic interaction networks. Epistasis causes hidden quantitative genetic variation in natural populations and could be responsible for the small additive effects, missing heritability and the lack of replication that are typically observed for human complex traits.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                10 September 2015
                2015
                : 6
                : 285
                Affiliations
                [1] 1Computer Science Institute of Nantes-Atlantic (Lina), Centre National de la Recherche Scientifique UMR 6241, Ecole Polytechnique de l'Université de Nantes Nantes, France
                [2] 2Computer Science Institute of Nantes-Atlantic (Lina), Centre National de la Recherche Scientifique UMR 6241, University of Nantes Nantes, France
                [3] 3Institut du Thorax, Institut National de la Santé et de la Recherche Médicale UMR 1087, Centre National de la Recherche Scientifique UMR 6291, University of Nantes Nantes, France
                [4] 4European Genomic Institute for Diabetes FR3508, Centre National de la Recherche Scientifique UMR 8199, Lille 2 University Lille, France
                Author notes

                Edited by: David A. Rosenblueth, Universidad Nacional Autónoma de México, Mexico

                Reviewed by: Jingyi Jessica Li, University of California, Los Angeles, USA; Xiaodan Fan, The Chinese University of Hong Kong, Hong Kong

                *Correspondence: Clément Niel, Computer Science Institute of Nantes-Atlantic (Lina), Centre National de la Recherche Scientifique UMR 6241, Ecole Polytechnique de l'Université de Nantes, Rue Christian Pauc, BP 50609, 44306 Nantes, France clement.niel@ 123456univ-nantes.fr

                This article was submitted to Bioinformatics and Computational Biology, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2015.00285
                4564769
                26442103
                e74658ca-3e49-43ca-997b-359da29766cb
                Copyright © 2015 Niel, Sinoquet, Dina and Rocheleau.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 May 2015
                : 27 August 2015
                Page count
                Figures: 8, Tables: 2, Equations: 2, References: 102, Pages: 19, Words: 14350
                Categories
                Genetics
                Review

                Genetics
                epistasis detection,genome-wide association study,complex disease,biological data mining,feature selection

                Comments

                Comment on this article