29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PASBio: predicate-argument structures for event extraction in molecular biology

      research-article
      1 , 2 , 3 , 1 ,
      BMC Bioinformatics
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The exploitation of information extraction (IE), a technology aiming to provide instances of structured representations from free-form text, has been rapidly growing within the molecular biology (MB) research community to keep track of the latest results reported in literature. IE systems have traditionally used shallow syntactic patterns for matching facts in sentences but such approaches appear inadequate to achieve high accuracy in MB event extraction due to complex sentence structure. A consensus in the IE community is emerging on the necessity for exploiting deeper knowledge structures such as through the relations between a verb and its arguments shown by predicate-argument structure (PAS). PAS is of interest as structures typically correspond to events of interest and their participating entities. For this to be realized within IE a key knowledge component is the definition of PAS frames. PAS frames for non-technical domains such as newswire are already being constructed in several projects such as PropBank, VerbNet, and FrameNet. Knowledge from PAS should enable more accurate applications in several areas where sentence understanding is required like machine translation and text summarization. In this article, we explore the need to adapt PAS for the MB domain and specify PAS frames to support IE, as well as outlining the major issues that require consideration in their construction.

          Results

          We introduce PASBio by extending a model based on PropBank to the MB domain. The hypothesis we explore is that PAS holds the key for understanding relationships describing the roles of genes and gene products in mediating their biological functions. We chose predicates describing gene expression, molecular interactions and signal transduction events with the aim of covering a number of research areas in MB. Analysis was performed on sentences containing a set of verbal predicates from MEDLINE and full text journals. Results confirm the necessity to analyze PAS specifically for MB domain.

          Conclusions

          At present PASBio contains the analyzed PAS of over 30 verbs, publicly available on the Internet for use in advanced applications. In the future we aim to expand the knowledge base to cover more verbs and the nominal form of each predicate.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            BIND--The Biomolecular Interaction Network Database.

            The Biomolecular Interaction Network Database (BIND; http://binddb. org) is a database designed to store full descriptions of interactions, molecular complexes and pathways. Development of the BIND 2.0 data model has led to the incorporation of virtually all components of molecular mechanisms including interactions between any two molecules composed of proteins, nucleic acids and small molecules. Chemical reactions, photochemical activation and conformational changes can also be described. Everything from small molecule biochemistry to signal transduction is abstracted in such a way that graph theory methods may be applied for data mining. The database can be used to study networks of interactions, to map pathways across taxonomic branches and to generate information for kinetic simulations. BIND anticipates the coming large influx of interaction information from high-throughput proteomics efforts including detailed information about post-translational modifications from mass spectrometry. Version 2.0 of the BIND data model is discussed as well as implementation, content and the open nature of the BIND project. The BIND data specification is available as ASN.1 and XML DTD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association of genes to genetically inherited diseases using data mining.

              Although approximately one-quarter of the roughly 4,000 genetically inherited diseases currently recorded in respective databases (LocusLink, OMIM) are already linked to a region of the human genome, about 450 have no known associated gene. Finding disease-related genes requires laborious examination of hundreds of possible candidate genes (sometimes, these are not even annotated; see, for example, refs 3,4). The public availability of the human genome draft sequence has fostered new strategies to map molecular functional features of gene products to complex phenotypic descriptions, such as those of genetically inherited diseases. Owing to recent progress in the systematic annotation of genes using controlled vocabularies, we have developed a scoring system for the possible functional relationships of human genes to 455 genetically inherited diseases that have been mapped to chromosomal regions without assignment of a particular gene. In a benchmark of the system with 100 known disease-associated genes, the disease-associated gene was among the 8 best-scoring genes with a 25% chance, and among the best 30 genes with a 50% chance, showing that there is a relationship between the score of a gene and its likelihood of being associated with a particular disease. The scoring also indicates that for some diseases, the chance of identifying the underlying gene is higher.
                Bookmark

                Author and article information

                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central (London )
                1471-2105
                2004
                19 October 2004
                : 5
                : 155
                Affiliations
                [1 ]National Institute of Informatics (NII), National Center of Sciences, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8430, Japan
                [2 ]Structural and Computational Biology Program, European Molecular Biology Laboratory, Heidelberg, Germany
                [3 ]Max Delbruck Center for Molecular Medicine, Berlin-Buch, Germany
                Article
                1471-2105-5-155
                10.1186/1471-2105-5-155
                535924
                15494078
                e8c17842-f54a-4a98-98d6-2744deaccc33
                Copyright © 2004 Wattarujeekrit et al; licensee BioMed Central Ltd.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 March 2004
                : 19 October 2004
                Categories
                Research Article

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article