66
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serological differentiation of antibodies against Rickettsia helvetica, R. raoultii, R. slovaca, R. monacensis and R. felis in dogs from Germany by a micro-immunofluorescent antibody test

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Spotted Fever Group (SFG) Rickettsiae can cause febrile diseases with or without rash in humans worldwide. In Germany only limited data are available about their medical significance. Serological screening tests for antibodies against rickettsiae usually only distinguish between SFG and Typhus Group (TG) Rickettsiae due to the strong cross reactivities within the groups. Seroprevalence rates in dogs, as possible sentinels for tick-borne diseases, could serve as an indicator for the distribution of different Rickettsia species.

          Methods

          In this study, a micro-immunofluorescence assay (micro-IFA) was established for detection and differentiation of antibodies against five Rickettsia species in dogs ( R. helvetica, R. raoultii, R. slovaca, R. monacensis and R. felis). Dogs that never left Germany (n = 605) previously investigated with an SFG-ELISA were included in this study and screened at a 1:128 dilution. Endpoint titres of fifty randomly selected seropositive samples of each of the five investigated regions in Germany were determined in order to allow a differentiation of the causative Rickettsia species. Sensitivity and specificity of the micro-IFA were compared with ELISA results of the previous study.

          Results

          A total of 93.9% of the dogs were positive for antibodies of the SFG Rickettsiae at the screening titer of 1:128. Differentiation of SFG Rickettsiae with the micro-IFA was possible in 70.4%, but in 29.6% of the cases the detected antibodies were not differentiable. Considering a clear differentiation by a twofold titre difference between observed reactions, the seroprevalence rates were 66.0% for R. helvetica, 2.8% for R. raoultii, 1.6% for R. slovaca, but no serological reaction could be clearly attributed to R. monacensis or R. felis. No statistically significant regional differences were found for R. helvetica, R. slovaca and R. raoultii comparing the five regions of Germany. Comparison of micro-IFA with ELISA revealed a sensitivity of 82.0% and a specificity of 83.8% for the Rickettsia SFG ELISA.

          Conclusions

          The micro-IFA is a useful serological tool to differentiate antibodies against different Rickettsia species in dogs. Seroprevalence rates in dogs correspond to the prevalence rates and distribution of Rickettsia-carrying tick species.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and 'HGE agent' as subjective synonyms of Ehrlichia phagocytophila.

          The genera Anaplasma, Ehrlichia, Cowdria, Neorickettsia and Wolbachia encompass a group of obligate intracellular bacteria that reside in vacuoles of eukaryotic cells and were previously placed in taxa based upon morphological, ecological, epidemiological and clinical characteristics. Recent genetic analyses of 16S rRNA genes, groESL and surface protein genes have indicated that the existing taxa designations are flawed. All 16S rRNA gene and groESL sequences deposited in GenBank prior to 2000 and selected sequences deposited thereafter were aligned and phylogenetic trees and bootstrap values were calculated using the neighbour-joining method and compared with trees generated with maximum-probability, maximum-likelihood, majority-rule consensus and parsimony methods. Supported by bootstrap probabilities of at least 54%, 16S rRNA gene comparisons consistently clustered to yield four distinct clades characterized roughly as Anaplasma (including the Ehrlichia phagocytophila group, Ehrlichia platys and Ehrlichia bovis) with a minimum of 96.1% similarity, Ehrlichia (including Cowdria ruminantium) with a minimum of 97.7% similarity, Wolbachia with a minimum of 95.6% similarity and Neorickettsia (including Ehrlichia sennetsu and Ehrlichia risticii) with a minimum of 94.9% similarity. Maximum similarity between clades ranged from 87.1 to 94.9%. Insufficient differences existed among E. phagocytophila, Ehrlichia equi and the human granulocytic ehrlichiosis (HGE) agent to support separate species designations, and this group was at least 98.2% similar to any Anaplasma species. These 16S rRNA gene analyses are strongly supported by similar groESL clades, as well as biological and antigenic characteristics. It is proposed that all members of the tribes Ehrlichieae and Wolbachieae be transferred to the family Anaplasmataceae and that the tribe structure of the family Rickettsiaceae be eliminated. The genus Anaplasma should be emended to include Anaplasma (Ehrlichia) phagocytophila comb. nov. (which also encompasses the former E. equi and the HGE agent), Anaplasma (Ehrlichia) bovis comb. nov. and Anaplasma (Ehrlichia) platys comb. nov., the genus Ehrlichia should be emended to include Ehrlichia (Cowdria) ruminantium comb. nov. and the genus Neorickettsia should be emended to include Neorickettsia (Ehrlichia) risticii comb. nov. and Neorickettsia (Ehrlichia) sennetsu comb. nov.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rickettsioses as paradigms of new or emerging infectious diseases.

            Rickettsioses are caused by species of Rickettsia, a genus comprising organisms characterized by their strictly intracellular location and their association with arthropods. Rickettsia species are difficult to cultivate in vitro and exhibit strong serological cross-reactions with each other. These technical difficulties long prohibited a detailed study of the rickettsiae, and it is only following the recent introduction of novel laboratory methods that progress in this field has been possible. In this review, we discuss the impact that these practical innovations have had on the study of rickettsiae. Prior to 1986, only eight rickettsioses were clinically recognized; however, in the last 10 years, an additional six have been discovered. We describe the different steps that resulted in the description of each new rickettsiosis and discuss the influence of factors as diverse as physicians' curiosity and the adoption of molecular biology-based identification in helping to recognize these new infections. We also assess the pathogenic potential of rickettsial strains that to date have been associated only with arthropods, and we discuss diseases of unknown etiology that may be rickettsioses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein rOmpB (ompB).

              To confirm the phylogenetic analysis previously inferred by comparison of the citrate synthase and rOmpA gene sequences (gitA and ompA, respectively), the rOmpB gene (ompB) of 24 strains of the genus Rickettsia was amplified and sequenced. rOmpB is an outer-membrane protein of high molecular mass, the presence of which can be demonstrated in most rickettsiae by immunological cross-reactivity in Western blots. No PCR amplification was obtained with Rickettsia bellii or Rickettsia canadensis. For the other rickettsiae, phylogenetic analysis was inferred from the comparison of both the gene and derived protein sequences by using parsimony, maximum-likelihood and neighbour-joining methods which gave the same organization. All nodes were well supported (>86% bootstrap values), except in the cluster including Rickettsia africae strain S and Rickettsia parkeri, and this analysis confirmed the previously established phylogeny obtained from combining results from gltA and ompA. Based on phylogenetic data, the current classification of the genus Rickettsia is inappropriate, specifically its division into two groups, typhus and spotted fever. Integration of phenotypic, genotypic and phylogenetic data will contribute to the definition of a polyphasic taxonomy as has been done for other bacterial genera.
                Bookmark

                Author and article information

                Contributors
                Miriam.Waechter@tropa.vetmed.uni-muenchen.de
                silkewoelfel@bundeswehr.org
                pfeffer@vetmed.uni-leipzig.de
                gerharddobler@bundeswehr.org
                Barbara.Kohn@fu-berlin.de
                Andreas.Moritz@vetmed.uni-giessen.de
                Stefan.pachnicke@bayer.com
                Cornelia.Silaghi@uzh.ch
                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                1756-3305
                23 March 2015
                23 March 2015
                2015
                : 8
                : 126
                Affiliations
                [ ]Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-University Munich, Leopoldstrasse 5, 80802 Munich, Germany
                [ ]Department of Virology and Rickettsiology, Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 Munich, Germany
                [ ]DZIF German Centre for Infection Research–Ludwig-Maximilians-University Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
                [ ]Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
                [ ]Small Animal Clinic, Faculty of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
                [ ]Department of Veterinary Clinical Sciences, Clinical Pathology and Clinical Pathophysiology, Justus-Liebig-University, Frankfurterstrasse 126, 35392 Gießen, Germany
                [ ]Bayer Vital GmbH, 51368 Leverkusen, Germany
                [ ]Current affiliation: National Centre for Vector Entomology, Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland
                Article
                745
                10.1186/s13071-015-0745-1
                4369902
                25779281
                eaa0ebe5-433a-4492-a733-4e649ae586a0
                © Wächter et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 12 January 2015
                : 16 February 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Parasitology
                rickettsia helvetica,r. raoultii,r. slovaca,r. monacensis,r. felis,seroprevalence,differentiation,dogs,ticks

                Comments

                Comment on this article