1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Progress in Electromagnetic Interference Shielding Performance of Porous Polymer Nanocomposites—A Review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The urge to develop high-speed data transfer technologies for futuristic electronic and communication devices has led to more incidents of serious electromagnetic interference and pollution. Over the past decade, there has been burgeoning research interests to design and fabricate high-performance porous EM shields to tackle this undesired phenomenon. Polymer nanocomposite foams and aerogels offer robust, flexible and lightweight architectures with tunable microwave absorption properties and are foreseen as potential candidates to mitigate electromagnetic pollution. This review covers various strategies adopted to fabricate 3D porous nanocomposites using conductive nanoinclusions with suitable polymer matrices, such as elastomers, thermoplastics, bioplastics, conducting polymers, polyurethanes, polyimides and nanocellulose. Special emphasis has been placed on novel 2D materials such as MXenes, that are envisaged to be the future of microwave-absorbing materials for next-generation electronic devices. Strategies to achieve an ultra-low percolation threshold using environmentally benign and facile processing techniques have been discussed in detail.

          Related collections

          Most cited references162

          • Record: found
          • Abstract: found
          • Article: not found

          Electromagnetic interference shielding with 2D transition metal carbides (MXenes)

          Materials with good flexibility and high conductivity that can provide electromagnetic interference (EMI) shielding with minimal thickness are highly desirable, especially if they can be easily processed into films. Two-dimensional metal carbides and nitrides, known as MXenes, combine metallic conductivity and hydrophilic surfaces. Here, we demonstrate the potential of several MXenes and their polymer composites for EMI shielding. A 45-micrometer-thick Ti3C2Tx film exhibited EMI shielding effectiveness of 92 decibels (>50 decibels for a 2.5-micrometer film), which is the highest among synthetic materials of comparable thickness produced to date. This performance originates from the excellent electrical conductivity of Ti3C2Tx films (4600 Siemens per centimeter) and multiple internal reflections from Ti3C2Tx flakes in free-standing films. The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding.

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ENERGA
                Energies
                Energies
                MDPI AG
                1996-1073
                June 2022
                May 25 2022
                : 15
                : 11
                : 3901
                Article
                10.3390/en15113901
                eadd0508-9d28-4b9b-af4e-7fc261ef6c86
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article